K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2023

Tham khảo :
 

3.98.1615.....100009999

=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}=2.21.3.3.32.4.4.43.5.....100.10099.101

=\dfrac{\left(1.2.3.....99\right)}{\left(2.3.4.....100\right)}.\dfrac{\left(3.4.5.....101\right)}{\left(2.3.4.....100\right)}=(2.3.4.....100)(1.2.3.....99).(2.3.4.....100)(3.4.5.....101)

=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}=1001.2101=200101
 

7 tháng 5 2021

giúp đi mà , năn nỉ đó ! T T 

NV
7 tháng 5 2021

Ta có:

\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)

Áp dụng:

\(C=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+\dfrac{4^2-1}{4^2}+...+\dfrac{100^2-1}{100^2}\)

\(C>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+1-\dfrac{1}{3.4}+...+1-\dfrac{1}{99.100}\)

\(C>99-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(C>99-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(C>99-\left(1-\dfrac{1}{100}\right)\)

\(C>98+\dfrac{1}{100}>98\) (đpcm)

27 tháng 4 2017

Ta có: \(A=\left\{\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{9999}{10000}\right\}\Rightarrow99\)số

\(A=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+...+\left(1-\dfrac{1}{100000}\right)\)

\(A=\left\{1+1+1+...+1\right\}\Rightarrow99\)số \(-\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{100000}=99-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{10000}\right)\)

Ta có: \(4=2^2>1.2\Rightarrow\dfrac{1}{4}< \dfrac{1}{1.2}\Leftrightarrow\dfrac{1}{4}< \dfrac{1}{1}-\dfrac{1}{2}\)

Tương tự: \(\dfrac{1}{9}< \dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{16}< \dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{10000}< \dfrac{1}{99}-\dfrac{1}{100}\)

Cộng theo vế ta được: \(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{10000}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrow A=99-\left(\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{16}+...+\dfrac{1}{10000}\right)>99-1=98\)

Vậy \(A>98\)

10 tháng 5 2017

C = 3/4 + 8/9 + 15/16 + ... + 9999/10000

C = 1- 1/4 + 1- 1/9 + 1- 1/16 + ... + 1- 1/10000

C = ( 1+1+1+...+1) - (1/2.2 + 1/3.3 + 1/4.4 + ...+ 1/100.100) >

(1+1+1+...+1) - ( 1/1.2+1/2.3+1/3.4+...+1/99.100) = 99 - ( 1/1-1/2+1/2-1/3+1/3+1/4+...+1/9999-1/10000

= 99 - ( 1-1/10000)= 99 - 1 + 1/10000= 98+1/10000 > 98

Vậy C > 98

NV
21 tháng 1 2021

\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{99.101}{100^2}\)

\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)

NV
20 tháng 11 2018

Đặt \(A=\dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{9999}{10000}=1-\dfrac{1}{4}+1-\dfrac{1}{9}+...+1-\dfrac{1}{10000}\)

\(=99-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\right)=99-B\)

Do \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>0\Rightarrow99-B< 99\Rightarrow A< 99\)

Do \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}\)

\(\Rightarrow A=99-B>99-\left(1-\dfrac{1}{100}\right)=98+\dfrac{1}{100}>98\)

Vậy \(98< \dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{9999}{10000}< 99\)

22 tháng 11 2018

thanks

30 tháng 10 2023

\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)

\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)

11 tháng 4 2022

0,625<0,9999

11 tháng 4 2022

đọc lại đề bài đi

NV
16 tháng 5 2021

\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)

Từ đó ta có:

\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{50^2-1}{50^2}>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+...+1-\dfrac{1}{49.50}\)

\(\Rightarrow A>49-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)

\(\Rightarrow A>49-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(\Rightarrow A>49-\left(1-\dfrac{1}{50}\right)=48+\dfrac{1}{50}>48\)

16 tháng 5 2021

\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\\ A=\left(1+1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\\ A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\)

Có \(\dfrac{1}{4}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\\ \dfrac{1}{9}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\\ \dfrac{1}{16}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\\ ...\\ \dfrac{1}{2500}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1-\dfrac{1}{50}< 1\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1\)

\(\Rightarrow A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)>49-1\\ \Rightarrow A>48\)