Tìm x, y ϵ Z sao cho:
y=\(\dfrac{3x+2}{3}+\dfrac{-2x+1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
3/ Ta có:
\(A=\dfrac{1-2x}{x+3}\)
\(A=\dfrac{-2x+1}{x+3}\)
\(A=\dfrac{-2x-6+7}{x+3}\)
\(A=\dfrac{-2\left(x+3\right)+7}{x+3}\)
\(A=-2+\dfrac{7}{x+3}\)
A nguyên khi \(\dfrac{7}{x+3}\) nguyên
⇒ 7 ⋮ \(x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
b) Ta quy đồng rồi => x+xy = 4
=> x(y+1) = 4 thì 1/x−y/2=1/4
Bài 1:
x/-3=9/4
nên x=-9/4*3=-27/4
2x+y=-4
=>y=-4-2x=-4-2*(-27/4)=-4+27/2=27/2-8/2=19/2
\(y=\dfrac{3x+2}{3}+\dfrac{-2x+1}{2}\)
\(\Rightarrow y=\dfrac{2\left(3x+2\right)}{6}+\dfrac{3\left(-2x+1\right)}{6}\)
\(\Rightarrow y=\dfrac{2\left(3x+2\right)+3\left(-2x+1\right)}{6}\)
\(\Rightarrow y=\dfrac{6x+4-6x+3}{6}=\dfrac{7}{6}\)