\(\Delta ABC\) vuông tại A, AH⊥BC (H ∈ BC ) CM: BC + AH > AB + AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác vuông ΔABH và ΔACH ta có:
C.h AB = AC (GT)
AH: cạnh chung
=> ΔABH = ΔACH (c.h - c.g.v)
b) ΔABC cân tại A (GT)
Lại có: AH là đường cao của ΔABC
=> AH là đường trung tuyến của ΔABC
=> H là trung điểm của BC
\(\Rightarrow BH=\frac{1}{2}BC=\frac{1}{2}.12=6\left(cm\right)\)
ΔABH vuông tại H. Áp dụng định lí Pitago ta có:
AB2 = AH2 + BH2
=> AH2 = AB2 - BH2 = 102 - 62 = 100 - 36 = 64
=> AH = 8 (cm)
c) Có: ΔABH = ΔACH (cmt)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng) (1)
Hay: \(\widehat{EAH}=\widehat{CAH}\)
Có: EH // AC (GT)
\(\Rightarrow\widehat{EHA}=\widehat{CAH}\) (so le trong) (2)
Từ (1) và (2) \(\Rightarrow\widehat{EAH}=\widehat{EHA}\)
=> ΔAEH cân tại E
d/
1.
Ta có : AC<AD (vì : D là tia đối của tia BC )
=> HD<HC
3.
Ta có : AB+AC>AH (vì : tog 2 cah cua tam giác luôn lớn hơn cah con lại)
Mà : 1/2AH<AB+AC
=> AB+AC>2AH
4.
Ta có : ko hiu
1. Vì AB=AH(gt)
AH=AI(gt)
=> AB+AI( áp dụng tính chất bắc cầu
2. Dễ thấy góc BAH=góc BCA vì cả hai góc cùng phụ với góc ABC:
góc BAH+gócHBA=90 độ (tam giác ABH vuông tại H)
góc BCA = góc ABC = 90 độ ( tam giác ABC vuông tại A)
F FUYYRY G ỦEOLho u;ghyiu h biul biurytuighailgtha.heroia.etimol.i85h5i8l58885858
A B C H
CM: giúp mình với