K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

thay 28 vao pt nhan tu roi am-gm cho cai do luon

Ps: tim Min

11 tháng 3 2018

thay 28 vào pt nhân tử rồi cối dưới mẫu

NV
3 tháng 11 2019

\(P=\frac{5a+5b+2c}{\sqrt{12\left(a^2+ab+bc+ca\right)}+\sqrt{12\left(b^2+ab+bc+ca\right)}+\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{5a+5b+2c}{\sqrt{12\left(a+b\right)\left(a+c\right)}+\sqrt{12\left(a+b\right)\left(b+c\right)}+\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\frac{5a+5b+2c}{\sqrt{\left(6a+6b\right)\left(2a+2c\right)}+\sqrt{\left(6a+6b\right)\left(2b+2c\right)}+\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(\Rightarrow P\ge\frac{2\left(5a+5b+2c\right)}{6a+6b+2a+2c+6a+6b+2b+2c+a+c+b+c}\)

\(\Rightarrow P\ge\frac{2\left(5a+5b+2c\right)}{3\left(5a+5b+2c\right)}=\frac{2}{3}\)

\(P_{min}=\frac{2}{3}\) khi \(\left\{{}\begin{matrix}a=b=1\\c=5\end{matrix}\right.\)

22 tháng 4 2020

\(P=\frac{5a+5b+2c}{\sqrt{12\left(a^2+11\right)}+\sqrt{12\left(b^2+11\right)}+\sqrt{c^2+11}}\)

\(=\frac{5a+5b+2c}{2\sqrt{3\left(a+b\right)\left(a+c\right)}+2\sqrt{3\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)(Gọi A là mẫu của phân thức) (*)

Áp dụng bất đẳng thức Cô - si cho hai số không âm, ta có:

\(2\sqrt{3\left(a+b\right)\left(a+c\right)}\le3\left(a+b\right)+\left(a+c\right)=4a+3b+c\)(1)

Tương tự ta có: \(2\sqrt{3\left(b+a\right)\left(b+c\right)}\le4b+3a+c\)(2)

\(\sqrt{\left(c+a\right)\left(c+b\right)}\le\frac{1}{2}\left(a+b+2c\right)\)(3)

Cộng từng vế của (1); (2); (3), ta có:

\(A\le\frac{15}{2}a+\frac{15}{2}b+3c\)(**)

Từ (*) và (**) suy ra \(P\ge\frac{5c+5b+2c}{\frac{15}{2}a+\frac{15}{2}b+3c}=\frac{2}{3}\)

Đẳng thức xảy ra khi a = b = 1; c = 5

22 tháng 4 2020

Dễ thấy \(a^2+11=a^2+ab+cb+ca=\left(a+b\right)\left(a+c\right)\)do đó ta đc

\(\sqrt{12\left(a^2+11\right)}=2\sqrt{3\left(a+b\right)\left(a+c\right)}\le3\left(a+b\right)\left(a+c\right)=4a+3b+c\)

tương tự nha

\(\sqrt{12\left(b^2+11\right)}=2\sqrt{3\left(a+b\right)\left(b+c\right)}\le3\left(a+b\right)\left(b+c\right)=3a+4b+c\)

\(\sqrt{c^2+11}=\sqrt{\left(c+a\right)\left(b+c\right)}\le\frac{c+a+b+c}{2}=\frac{a+b+2c}{2}\)

khi đó ta đc

\(\sqrt{12\left(a^2+11\right)}+\sqrt{12\left(b^2+11\right)}+\sqrt{c^2+11}\le\frac{15a}{2}+\frac{15b}{2}+3c\)

suy ra \(P\ge\frac{5a+5b+2c}{\frac{15a}{2}+\frac{15b}{2}+3c}=\frac{10a+10b+4c}{15a+15b+6c}=\frac{2}{3}\)

zậy GTNN của P=2/3 

dấu = xảy ra khi \(\hept{\begin{cases}2a+3b=3a+2b=c\\ab+bc+ac=11\end{cases}=>a=b=1,c=5}\)

cách của bạn kia cx đc nha , cậu có thể tham khảo cách mình

NV
3 tháng 10 2021

\(404=3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)-2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\ge\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-\dfrac{2}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\le1212\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le2\sqrt{303}\)

Ta có:

\(5a^2+2ab+2b^2=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow P\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{2}{c}+\dfrac{1}{a}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{2\sqrt{303}}{3}\)

NV
13 tháng 1

Bunhiacopxki:

\(\left(b+a+a\right)\left(b+c+\dfrac{c^2}{a}\right)\ge\left(b+\sqrt{ca}+c\right)^2\)

\(\Rightarrow\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}\ge\dfrac{2a^2+ab}{\left(2a+b\right)\left(b+c+\dfrac{c^2}{a}\right)}=\dfrac{a^2}{c^2+ab+bc}\)

Tương tự:

\(\dfrac{2b^2+bc}{\left(c+\sqrt{ca}+a\right)^2}\ge\dfrac{b^2}{a^2+ab+bc}\)

\(\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\ge\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{a^2}{c^2+ab+ac}+\dfrac{b^2}{a^2+ab+bc}+\dfrac{c^2}{b^2+ac+bc}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

Dấu "=" xảy ra khi \(a=b=c\)

23 tháng 5 2021

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

NV
21 tháng 8 2021

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

21 tháng 8 2021

∑ cái này nghĩa là gì ạ

6 tháng 8 2020

\(P=\frac{3a+3b+2c}{\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}}\)

\(=\frac{3a+3b+2c}{\sqrt{6\left(a^2+ab+bc+ca\right)}+\sqrt{6\left(b^2+ab+bc+ca\right)}+\sqrt{c^2+ab+bc+ca}}\)(Do ab + bc + ca = 5)

\(=\frac{3a+3b+2c}{\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT AM - GM, ta được:

\(\sqrt{6\left(a+b\right)\left(a+c\right)}=2\sqrt{\frac{6}{4}\left(a+b\right)\left(a+c\right)}\)\(\le\frac{6}{4}\left(a+b\right)+\left(a+c\right)=\frac{5}{2}a+\frac{6}{4}b+c\)

\(\sqrt{6\left(b+a\right)\left(b+c\right)}=2\sqrt{\frac{6}{4}\left(b+a\right)\left(b+c\right)}\)\(\le\frac{6}{4}\left(a+b\right)+\left(b+c\right)=\frac{6}{4}a+\frac{5}{2}b+c\)

\(\sqrt{\left(c+a\right)\left(c+b\right)}\le\frac{\left(c+a\right)+\left(c+b\right)}{2}=c+\frac{a}{2}+\frac{b}{2}\)

Cộng theo vế của 3 BĐT trên, ta được: \(\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)\(\le\frac{9}{2}a+\frac{9}{2}b+3c\)

\(\Rightarrow\frac{3a+3b+2c}{\sqrt{6\left(a+b\right)\left(a+c\right)}+\sqrt{6\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)\(\ge\frac{3a+3b+2c}{\frac{9}{2}a+\frac{9}{2}b+3c}=\frac{2}{3}\)

Đẳng thức xảy ra khi \(a=b=1;c=2\)