K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

delta(x) =(2m+1)^2 -4(m^2 +5m) =4m^2 +4m +1 -4m^2 -20m

delta(x) = -16m +1

cần: m <= 1/16

\(x_1x_2=6\Leftrightarrow\dfrac{c}{a}=m^2+5m-6=0\left(a+b+c=0\right)\)

\(\left[{}\begin{matrix}m=1\left(l\right)\\m=-6\left(n\right)\end{matrix}\right.\)

2 tháng 3 2018

delta(x) =(2m+1)^2 -4(m^2 +5m) =4m^2 +4m +1 -4m^2 -20m

delta(x) = -16m +1

cần: m <= 1/16

x1x2=6⇔ca=m2+5m−6=0(a+b+c=0)x1x2=6⇔ca=m2+5m−6=0(a+b+c=0)

[m=1(l)m=−6(n)banh

NV
18 tháng 11 2021

\(\Delta'=\left(m+1\right)^2-\left(5m+1\right)=m^2-3m\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=5m+1\end{matrix}\right.\)

a.

\(S=\left(x_1+x_2\right)^2-3x_1x_2=4\left(m+1\right)^2-3\left(5m+1\right)\)

\(=4m^2-7m+1=\dfrac{7}{3}\left(m^2-3m\right)+\dfrac{5}{3}m^2+1\ge1\)

\(S_{min}=1\) khi \(\dfrac{7}{3}\left(m^2-3m\right)+\dfrac{5}{3}m^2=0\Rightarrow m=0\)

b.

\(1< x_1< x_2\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)>0\\\dfrac{x_1+x_2}{2}>1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1>0\\x_1+x_2>2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5m+1-2\left(m+1\right)+1>0\\2\left(m+1\right)>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m>0\\m>-1\end{matrix}\right.\) \(\Rightarrow m>0\)

Kết hợp điều kiện delta \(\Rightarrow m\ge3\)

19 tháng 11 2021

\(a,\Leftrightarrow\Delta\ge0\Leftrightarrow\left(2m+2\right)^2-4\left(5m+1\right)\ge0\Leftrightarrow4m^2-12m\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge3\end{matrix}\right.\)

\(vi-ét\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1x2=5m+1\end{matrix}\right.\)

\(\Rightarrow S=x1^2+x2^2-x1x2=\left(x1+x2\right)^2-3x1x2\)

\(=\left(2m+2\right)^2-3\left(5m+1\right)=4m^2-7m+1\)

\(=\left(2m\right)^2-2.2.\dfrac{7}{4}.m+\left(\dfrac{7}{4}\right)^2-\dfrac{33}{16}=\left(2m-\dfrac{7}{4}\right)^2-\dfrac{33}{16}\left(1\right)\)

\(TH1:m\ge3\Rightarrow\left(1\right)\ge\left(2.3-\dfrac{7}{4}\right)^2-\dfrac{33}{16}=16\)

\(TH2:m\le0\Rightarrow\left(1\right)\ge\left(0-\dfrac{7}{4}\right)^2-\dfrac{33}{16}=1\)

\(\Rightarrow MinS=1\Leftrightarrow m=0\left(tm\right)\)

\(b,1< x1< x2\Leftrightarrow0< x1-1< x2-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-1\right)\left(x2-1\right)>0\\x1+x2-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\\\left\{{}\begin{matrix}x1 < 1\\x2< 1\end{matrix}\right.\end{matrix}\right.\\2m+2-2>0\\\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}x1x2>1\\x1x2< 1\end{matrix}\right.\\m>0\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}m>0\\m< 0\end{matrix}\right.\\m>0\\\end{matrix}\right.\Rightarrow m>3\)

18 tháng 12 2020

ĐK: \(x\ge2\)

\(pt\Leftrightarrow x^2+mx=x-2\)

\(\Leftrightarrow x^2+\left(m-1\right)x+2=0\)

Phương trình có hai nghiệm \(\Leftrightarrow\Delta=m^2-2m-7\ge0\Leftrightarrow\left[{}\begin{matrix}m\le1-2\sqrt{2}\\m\ge1+2\sqrt{2}\end{matrix}\right.\)

Theo định lí Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1.x_2=2\end{matrix}\right.\)

\(x_1+x_2=3x_1x_2\)

\(\Leftrightarrow1-m=6\)

\(\Leftrightarrow m=-5\left(tm\right)\)

22 tháng 8 2023

\(\Delta'=\left[-\left(m+1\right)^2\right]-\left(m^2-1\right)\\ =m^2+2m+1-m^2+1\\ =2m+2\)

Để PT có 2 nghiệm phân biệt thì: \(\Delta'>0\)

\(\Leftrightarrow2m+2>0\\\Leftrightarrow2m>-2\\ \Leftrightarrow m>-1 \)

Theo vi ét có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1x_2=\dfrac{c}{a}=m^2-1\end{matrix}\right.\)

Theo đề có:

\(x_1^2+x_2^2=x_1x_2+8\\ \Leftrightarrow x_1^2+x_2^2-x_1x_2-8=0\\ \Leftrightarrow x_1^2+x_2^2+2x_1x_2-x_1x_2-2x_1x_2-8=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2-8=0\\ \Leftrightarrow\left(2m+2\right)^2-3\left(m^2-1\right)-8=0\\ \Leftrightarrow4m^2+8m+4-3m^2+3-8\\ \Leftrightarrow m^2+8m-1=0 \)

\(\Delta=8^2-4.-1=64+4=68\) > 0

\(\Rightarrow m_1=\dfrac{-8+\sqrt{68}}{2}=-4+\sqrt{17}\left(nhận\right)\)

\(m_2=\dfrac{-8-\sqrt{68}}{2}=-4-\sqrt{17}\left(loại\right)\)

Vậy để phương trình có hai nghiệm phân biệt thỏa mãn x12 + x22 = x1x2 +8 thì m có giá trị là \(-4+\sqrt{17}\)

$HaNa$

Δ=(2m+2)^2-4(m^2-1)

=4m^2+8m+4-4m^2+4=8m+8

Để phương trình có hai nghiệm phân biệt thì 8m+8>0

=>m>-1

x1^2+x2^2=x1x2+8

=>(x1+x2)^2-2x1x2-x1x2=8

=>(2m+2)^2-3(m^2-1)-8=0

=>4m^2+8m+4-3m^2+3-8=0

=>m^2+8m-1=0

=>m=-4+căn 17(nhận) hoặc m=-4-căn 17(loại)

22 tháng 5 2021

a/ \(x^2-\left(2m+1\right)x+m=0\)

\(\Delta=[-\left(2m+1\right)]^2-4m=4m^2+4m+1-4m=4m^2+1\)

vi 1>0

4m2≥0(với mọi m)

Nên 4m2+1>0(với mọi m)

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

22 tháng 5 2021

b)Theo định lí viet \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt

\(\Rightarrow x_1^2-\left(2m+1\right)x_1+m=0\) \(\Leftrightarrow x_1^2-x_1=2mx_1-m\)

\(A=x_1^2-x_1+2mx_2+x_1x_2\)

\(=2mx_1-m+2mx_2+x_1x_2\)\(=2m\left(x_1+x_2\right)-m+x_1x_2\)\(=2m\left(2m+1\right)-m+m\)\(=4\left(m+\dfrac{1}{4}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall m\)

Dấu = xra khi \(m=-\dfrac{1}{4}\)

Vậy minA=\(-\dfrac{1}{4}\)khi \(m=-\dfrac{1}{4}\) 

 

Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)

\(=4m^2-4m+1-4m^2+8\)

\(=-4m+9\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-4m+9>0\)

\(\Leftrightarrow-4m>-9\)

hay \(m< \dfrac{9}{4}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)

Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)

\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)

\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)

\(\Leftrightarrow-4m=-4\)

hay m=1(thỏa ĐK)

Vậy: m=1

13 tháng 5 2021

PT có 2 nghiệm phân biệt

`<=>Delta>0`

`<=>(2m-1)^2-4(m^2-2)>0`

`<=>4m^2-4m+1-4m^2+8>0`

`<=>-4m+9>0`

`<=>m<9/4`

Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`

`|x_1-x_2|=\sqrt5`

`<=>(x_1-x_2)^2=5`

`<=>(x_1+x_2)^2-4(x_1.x_2)=5`

`<=>4m^2-4m+1-4m^2+8=5`

`<=>-4m+8=5`

`<=>4m=3`

`<=>m=3/4(tm)`

Vậy `m=3/4=>|x_1-x_2|=\sqrt5`

NV
26 tháng 12 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+3m-2\right)=-m+3\)

a. Phương trình có nghiệm khi:

\(\Delta'\ge0\Rightarrow m\le3\)

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3m-2\end{matrix}\right.\)

c.

\(x_1^2+x_2^2-x_1x_2=22\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=22\)

\(\Leftrightarrow4\left(m+1\right)^2-3\left(m^2+3m-2\right)=22\)

\(\Leftrightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\left(loại\right)\\m=-3\end{matrix}\right.\)

30 tháng 5 2016

\(\frac{3}{2}< m< \frac{9}{2}\)

30 tháng 5 2016

xin lỗi đánh nhầm  ta tìm được: 4  < m < 9         bạn nhé