giải hệ pt
\(3xy=4\left(x+y\right)\)
\(5yz=6\left(y+z\right)\)
\(7zx=8\left(z+x\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: x=0
TH2: x khác 0 thì y,z khác 0
VT là bậc hai theo 2 biến, VP là bậc nhất theo các biến tương ứng. Do đó chia pt cho 2 biến tương ứng theo VT. cụ thể pt đầu chia cho xy, pt 2 chia cho yz, pt 3 chia cho zx
ta quy về đươc pt 3 ẩn giải được
còn lại em tự giải nhé
ê cu bài phần a nè
(2)<=>X2(1-X3)+y2(1-y3)=0 (3)
từ (1) => 1-x3=y3;1-y3=x3
thay vào (3)ta được :x2.y3+y2.x3=0
<=>x2.y2.(x+y)=0 (tới đây tự lo liệu)
\(hpt\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\5yz=6\left(y+z\right)\\4zx=3\left(x+z\right)\end{matrix}\right.\)\(\Rightarrow x=y=z=0\) \(là\) \(nghiệm\)
\(x=y=z\ne0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2\left(x+y\right)}{2xy}=\dfrac{3xy}{2xy}\\\dfrac{6\left(y+z\right)}{6yz}=\dfrac{5yz}{6yz}\\\dfrac{3\left(x+z\right)}{3zx}=\dfrac{4xz}{3zx}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{6}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{4}{3}\end{matrix}\right.\)\(ddặt\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\b+c=\dfrac{5}{6}\\a+c=\dfrac{4}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1=\dfrac{1}{x}\Leftrightarrow x=1\left(tm\right)\\b=\dfrac{1}{2}=\dfrac{1}{y}\Leftrightarrow y=2\left(tm\right)\\c=\dfrac{1}{3}\Leftrightarrow z=3\left(tm\right)\end{matrix}\right.\)
TK
Hệ có nghiệm là x = y = z = 0
Với xyz ≠ 0 thì (I) được viết lại
\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{5}{6}\\\dfrac{z+x}{zx}=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left(II\right)\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{6}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{4}{3}\end{matrix}\right.\)
Cộng 3 phương trình của hệ (II) theo vế ta được
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{11}{3}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{11}{6}\)
Trừ phương trình trên cho từng phương trình của hệ (II) theo vế ta lần lượt có \(x=1,y=2,z=3\)
Vậy hệ phương trình có hai nghiệm \(\left(0;0;0\right)\&\left(1;2;3\right)\)
a: Sửa đề:
\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\4yz=3\left(y+z\right)\\5xz=6\left(z+x\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{4}{3}\\\dfrac{x+z}{xz}=\dfrac{5}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{4}{3}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{3}{2}\\\dfrac{1}{y}=1\\\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{2}{3};y=1;z=3\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{7x-3y+2z}{7\cdot4-3\cdot3+2\cdot9}=\dfrac{37}{37}=1\)
=>x=4; y=3; z=9
trong các giá trị x,y hoặc z bằng 0 thì bạn dễ dàng suy ra hai giá trị còn lại bằng 0. Vậy x=y=z=0 là một nghiệm.
Xét trường hợp x,y,z khác 0 bạn sẽ có:
3xy=2x+2y (1*)
5yz= 6(y+z) (2*)
4xz= 3(z+x) (3*)
=>
3xyz = 2xz + 2yz (4*)
5xyz = 6xy + 6xz (5*)
4xyz = 3yz + 3xy (6*)
3 x (4*)–(5*) => bạn sẽ có 4xyz=6yz–6xy
Thế 4xyz=6yz–6xy vào (6*) bạn sẽ có:
=>6yz–6xy = 3yz + 3xy
hay 3yz=9xy =>z=3x (7*)
2x(6*)–(5*) => 3xyz=6yz – 6xz
Thế vào 3xyz=6yz – 6xz (4*)
=>6yz–6xz=2xz+2yz
=>4yz=8xz
=> y= 2x (8*)
Thay y=2x vào (1*) => 6x²=6x => x=1. => y=2; z=3.
suy ra hệ sẽ có hai nghiệm là:
x=y=z=0 và x=1; y=2; z=3.