K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

thay x=-1 ta có

11945+(-1)9+(-1)2=1-1+1=1

theo định lí bezoute của đa thức -x1945+x9+x2=1 cho đa thức x+1 là 1

27 tháng 2 2018

Có: x + 1 = 0 => x = -1

CASIO: Nhập '' -x1945 + x9 + x2 '' --> CALC --> x? nhập ''-1'' --> = 1

Vậy r = 1 :v

10 tháng 11 2016

hoc lop 6 ma doi ra cau hoi lop 8

6 tháng 12 2020

https://thuanmochuong.com/

15 tháng 12 2016

0
 

25 tháng 1 2017

 Dư=1-x5877 nha !

chon mk nha

25 tháng 1 2017

Quan trọng là cách làm bạn ơi. Nếu trình bày ra mình sẽ cho bn

14 tháng 8 2020

Ta cần tìm số dư khi chia \(A\left(x\right)=x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho \(B\left(x\right)=x^2-1\)

Số dư của \(A\left(x\right)\) cho \(B\left(x\right)\) có bậc là 1. Đặt đa thức dư có dạng \(ax+b\)

Ta có : \(A\left(x\right)=B\left(x\right).H\left(x\right)+ax+b\)

Hay : \(A\left(x\right)=\left(x^2-1\right).H\left(x\right)+ax+b\)

+) Xét \(x=1\) thì : \(A\left(1\right)=a+b\)

\(\Leftrightarrow1+1+1-1-1+1=a+b\)

\(\Leftrightarrow a+b=2\) (1) 

+) Xét \(x=-1\) thì \(A\left(-1\right)=b-a\)

\(\Leftrightarrow-1-1+1-1-\left(-1\right)+1=b-a\)

\(\Leftrightarrow b-a=0\) (2)

Từ (1) và (2) suy ra \(a=1,b=1\)

Vậy đa thức dư có dạng \(x+1\)

Vậy số dư của phép chia \(x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho \(x^2-1\) là \(x+1\)

31 tháng 8 2016

\(f\left(x\right)=\left(x^2-1\right)g\left(x\right)+ax+b\)

\(f\left(1\right)=\left(1^2-1\right)g\left(1\right)+a+b=1^{2015}+1^{1945}+1^{1930}-1^2-1+1=2\)

\(f\left(-1\right)=\left(\left(-1\right)^2-1\right)g\left(-1\right)+a\left(-1\right)+b=-1-1+1-1+1+1=0\)

\(\hept{\begin{cases}a+b=2\\-a+b=0\end{cases}}\Leftrightarrow a=b=1\)

Vậy đa thức dư là : x + 1