cm bất đẳng thức :
a/(a+b)+b/(b+c)+c/(c+a)>=3/2.với.a>=b>=c>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BDT\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)
\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{\left(b-a\right)+\left(a-c\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(a-b\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+\frac{1}{2}\left(a-c\right)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\frac{\left(c-a\right)\left(a-b\right)}{2\left(a+b\right)\left(b+c\right)}+\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)}\left(-\frac{1}{a+b}+\frac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)\left(b-c\right)}{2\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)(luôn đúng \(\forall a\ge b\ge c>0\))
Vậy BĐT đã được chứng minh
trả lời
dùng bất đẳng thức cosi cho 2 số ko âm
sử dụng cộng mỗi cặp trên
đc 3 cặp
cộng lại là ra
c và d ở đâu vại:>
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a= b
Ta có đpcm
Cách 1. Áp dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a.\frac{1}{a}}+\sqrt{b.\frac{1}{b}}+\sqrt{c.\frac{1}{c}}\right)^2=\left(1+1+1\right)^2=9\)
Cách 2. Áp dụng bđt Cauchy :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Tham khảo link:
cm giùm mình: a) a,b,c>0 cm: a/(b+c)+b/(c+a)+c/(a+b)>=3/2? | Yahoo Hỏi & Đáp
link đây nè bạn:https://hoc24.vn/hoi-dap/question/196314.html