nếu 2 phương trình \(x^2+ax+b=0\) và \(x^2+cx+d=0\) có nghiệm chung thì \(\left(b-d\right)^2+\left(a-c\right)\left(ad-bc\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi nghiệm chung phương trình là x2
Phương trình x2 + ax + b = 0 có nghiệm
\(x_1+x_2=-a;x_1.x_2=b\)
Tương tự với phương trình x2 + cx + d = 0
=> \(x_3+x_2=-c;x_2.x_3=d\)
Khi đó b - d = x2(x1 - x3)
a - c = x3 - x1
ad - bc = -(x1 + x2).x2.x3 + x1.x2(x3 + x2) = \(x_2^2\left(x_1-x_3\right)\)
Khi đó P = (b - d)2 + (a - c)(ad - bc)
= \(\left[x_2\left(x_1-x_3\right)\right]^2-\left(x_1-x_3\right)x_2^2\left(x_1-x_3\right)=0\)(đpcm)
Do \(x_1,y_1\) lần lượt là các nghiệm của \(F\left(x\right)=ax+b\) và \(G\left(y\right)=cy+d\) nên ta có \(ax_1+b=cy_1+d=0\) (*)
Mặt khác, \(ad=bc\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\). Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\left(k\ne0\right)\) thì suy ra \(a=kb;c=kd\). Thay vào (*), ta có \(kbx_1+b=kdy_1+d=0\) \(\Leftrightarrow b\left(kx_1+1\right)=d\left(ky_1+1\right)=0\) \(\Leftrightarrow kx_1+1=ky_1+1=0\) (do \(b,d\ne0\)) \(\Leftrightarrow x_1=y_1\) (đpcm)
\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)
\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)
Ta có:
\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)
\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)
\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)
Đặt \(f\left(x\right)=ax^{3\:}+bx^2+cx+d\left(a\ne0\right)\)
Nếu \(a< 0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)\in\left(-\infty;+\infty\right)\), với \(x\in\left(-\infty;+\infty\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Nếu \(a>0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=+\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm