Cho x, y, z > 0. CMR :
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VT^3=\left(\sqrt[3]{\sqrt{a}.\sqrt{a}.\left(a^2+7bc\right)}+\sqrt[3]{\sqrt{b}.\sqrt{b}.\left(b^2+7ca\right)}+\sqrt[3]{\sqrt{c}.\sqrt{c}.\left(c^2+7ab\right)}\right)^3\)
\(\le\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\left(a^2+b^2+c^2+7ab+7bc+7ca\right)\)
\(\le3\left(a+b+c\right)\left[\left(a+b+c\right)^2+\frac{5}{3}\left(a+b+c\right)^2\right]\)
\(=8\left(a+b+c\right)^3\)
\(\Rightarrow VT\le2\left(a+b+c\right)\)
Cho a,b,c>0 .Cmr:
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\geq 3\sqrt[3]{\frac{abc}{(a+x)(b+y)(c+z)}}\)
\(\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}\geq 3\sqrt[3]{\frac{xyz}{(a+x)(b+y)(c+z)}}\)
Cộng theo vế:
\(\Rightarrow \frac{x+a}{x+a}+\frac{y+b}{y+b}+\frac{c+z}{c+z}\geq 3.\frac{\sqrt[3]{xyz}+\sqrt[3]{abc}}{\sqrt[3]{(a+x)(b+y)(c+z)}}\)
\(\Rightarrow 3\geq 3.\frac{\sqrt[3]{xyz}+\sqrt[3]{abc}}{\sqrt[3]{(a+x)(b+y)(c+z)}}\)
\(\Rightarrow \sqrt[3]{(a+x)(b+y)(c+z)}\geq \sqrt[3]{abc}+\sqrt[3]{xyz}\)
Ta có đpcm
b) Áp dụng công thức trên, với \(a=\sqrt[3]{3}; b=\sqrt[3]{3^2}+1; c=1; x=\sqrt[3]{3}; y=\sqrt[3]{3^2}-1; z=1\) suy ra:
\(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}\leq \sqrt[3]{(\sqrt[3]{3}+\sqrt[3]{3})(\sqrt[3]{3^2}+1+\sqrt[3]{3^2}-1)(1+1)}=2\sqrt[3]{3}\)
Ta có đpcm.
mk học lớp 6 nên ko biết làm nhưng k cho mk nha !!!!!!!!!!!!!!!!!!!!!!
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Lời giải:
Áp dụng BĐT Holder:
\((\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc})^3\leq (a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)(1+1+1)\)
\(\Leftrightarrow (\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc})^3\leq 3(a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)\)
Ta cần chứng minh:
\(3(a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)\leq 8(a+b+c)^3\)
\(\Leftrightarrow 3(a^2+7bc+b^2+7ac+c^2+7ab)\leq 8(a+b+c)^2(*)\)
Thật vậy:
Theo hệ quả của BĐT AM-GM thì \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}\)
Do đó:
\(3(a^2+7bc+b^2+7ac+c^2+7ab)=3[(a+b+c)^2+5(ab+bc+ac)]\)
\(\leq 3[(a+b+c)^2+\frac{5}{3}(a+b+c)^2]=8(a+b+c)^2\)
\((*)\) đúng, ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)