K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

a) \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\forall a;b\right)\)

Vậy bdt đã được cm

b) \(K=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)\)

Ta có :

\(\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(\Leftrightarrow\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n+1\right)^2\)

\(n^2+3n;n^2+3n+1\) là 2 số tn liên tiếp

\(\Rightarrow K\) không phải số chính phương

bài 1:tìm 1 phân số biết rằng khi cộng cả tử và mẫu phân số ấy cới mẫu số thì được phân số mới gấp 2 lần phân số cần tìm bài 2:tìm phân số \(\dfrac{a}{b}\) tối giản nhỏ nhất khác 0 sao cho khi chia \(\dfrac{a}{b}\) cho mỗi phân số \(\dfrac{7}{14}\) và \(\dfrac{21}{35}\) ta được kết quả là 1 số tự nhiên. bài 3:tìm phân số tối giản \(\dfrac{a}{b}\) lớn nhất (a,b thuộc N*)sao cho khi chia mỗi phân số...
Đọc tiếp

bài 1:tìm 1 phân số biết rằng khi cộng cả tử và mẫu phân số ấy cới mẫu số thì được phân số mới gấp 2 lần phân số cần tìm

bài 2:tìm phân số \(\dfrac{a}{b}\) tối giản nhỏ nhất khác 0 sao cho khi chia \(\dfrac{a}{b}\) cho mỗi phân số \(\dfrac{7}{14}\)\(\dfrac{21}{35}\) ta được kết quả là 1 số tự nhiên.

bài 3:tìm phân số tối giản \(\dfrac{a}{b}\) lớn nhất (a,b thuộc N*)sao cho khi chia mỗi phân số \(\dfrac{4}{15}\) ,\(\dfrac{6}{125}\) cho \(\dfrac{a}{b}\) ta được kết quả là 1 số tự nhiên.

bài 4:cho A=\(\dfrac{2n+1}{n+3}\) + \(\dfrac{3n-5}{n-3}\) - \(\dfrac{4n-5}{n-3}\)

a)tìm n để A là phân số tối giản

b)tìm n thuộc Z để A thuộc Z

bài 5:tìm n thuộc N để M=\(\dfrac{6n-3}{4n-6}\) đạt GTLN

bài 6:tìm GTLN và GTNN của A=\(\dfrac{ab}{a+b}\) (ab có gạch đầu)

bài 7 : tìm 1 số có 4 c/s vừa là số chính phương vừa là số lập phương

0
28 tháng 9 2021

\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)

\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

27 tháng 3 2021

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

29 tháng 4 2018

Bài 1:

\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\) với a,b,c > 0

Áp dụng BĐT Chauchy cho 2 số không âm, ta có:

\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge c\sqrt{\dfrac{b}{a}.\dfrac{a}{b}}=2c\)

\(\dfrac{ac}{b}+\dfrac{ab}{c}=a\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\ge a\sqrt{\dfrac{c}{b}.\dfrac{b}{c}}=2a\)

\(\dfrac{ab}{c}+\dfrac{bc}{a}=b\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge b\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2b\)

Cộng vế theo vế ta được:

\(2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)

29 tháng 4 2017

a) Để A là phân số thì 5 không chia hết cho n-1 hay n-1 không phải Ư(5) mà Ư(5)={-5;-1;1;5}

Ta có bảng sau:

\(n-1\ne\) -5 -1 1 5
\(n\ne\) -4 0 2 6

Vậy n\(\ne\left\{-4;0;2;6\right\}\)thì A là phân số

n=0 => A=\(\dfrac{5}{0-1}=-5\)

n=10 => A=\(\dfrac{5}{10-1}=\dfrac{5}{9}\)

n=-2 => A=\(\dfrac{5}{-2-1}=-\dfrac{5}{3}\)

Để A là số nguyên =>5 chia hết cho n-1 <=>n-1 là Ư(5)

Từ bảng trên => n={-4;0;2;6} thì A nguyên

b) Do n là Số tự nhiên => n và n+1 là 2 số tự nhiên liên tiếp

=>n và n+1 nguyên tố cùng nhau

=>phân số \(\dfrac{n}{n+1}\)tối giản(dpcm)

c)\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=1-\dfrac{1}{50}< 1\left(đpcm\right)\)

29 tháng 4 2017

c) 1/1.2 + 1/2.3 + 1/3.4 + .....+ 1/49.50

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ......+ 1/49 - 1/50

tới bước đây mik làm gọn lại chút nha

= 1/1 - 1/50

=49/50

Suy ra : 49/50 <1 ( điều phải chứng minh )

5 tháng 1 2018

Bài toán tổng quát: Đề này n lẻ mới đúng nhé

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{ab\left(ac+bc+c^2\right)}=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Nếu \(a=-b\Rightarrow a^n=-b^n\)\(\dfrac{1}{a^n}=\dfrac{-1}{b^n}\)

Ta có: \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{c^n}\)

\(\dfrac{1}{a^n+b^n+c^n}=\dfrac{1}{c^n}\)

VT = VP => ĐPCM

Còn ý còn lại thì dựa trên bài này mà biến đổi một tí là ra

5 tháng 1 2018

@Hà Nam Phan Đình làm giúp luôn đi

19 tháng 6 2015

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                                           \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)

=> A là số chính phương

b) B có số số hạng là : (2n-2):2+1= n (số)

=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)

=> B không là số chính phương.

3 tháng 12 2015

A có số số hạng là:

(2n+1-1):2+1=n+1(số)

=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                       \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)  

=>A là số chính phương

28 tháng 5 2018

Đề kiểu gì v bạn?