Tìm x biết
|5(2x + 3)| + |2(2x + 3)| + |2x + 3| = 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|5(2x+3)| + |2(2x+3)| + |2x+3| = 16
|5| * |2x+3| + |2| * |2x+3| + |2x+3| = 16
8* |2x+3| = 16
|2x+3|= 2
\(\Rightarrow\orbr{\begin{cases}2x+3=2\\2x+3=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}}\)
vậy x= -1/2 hoặc x= -5/2
Vì |5(2x+3)|, |2(2x+3)| và |2x+3| luôn luôn là số tự nhiên
=> 5(2x+3)+2(2x+3)+2x+3 = 16
<=> (2x+3).(5+2+1) = 16
<=> 2x+3 = 16:8 = 2
<=> 2x = 2-3 = -1
<=> x = -1:2 = -1/2
`|5(2x+3)|+|2(2x+3)|+|2x+3|=16`
`<=>5|2x+3|+2|2x+3|+|2x+3|=16`
`<=>8|2x+3|=16`
`<=>|2x+3|=2`
`<=>[(2x+3=2),(2x+3=-2):}<=>[(x=-1/2),(x=-5/2):}` (Mà `x in ZZ`)
`=>` Không có giá trị nào của `x` thỏa mãn.
NX: 2x+3; 5(2x+3) và 2(2x+3) cùng dấu
+TH1: 2x+3 \(\ge\)0 => x \(\ge\frac{-3}{2}\)
=> 5(2x+3), 2(2x+3) \(\ge\)0
=> |5(2x+3)| = 5(2x+3); |2(2x+3)| = 2(2x+3); |2x+3| = 2x+3
=> (2x+3)(5+2+1) = 16
=> 2x+3 = 2
=> 2x = -1
=> x = -1/2 (t/m)
+ TH2: 2x+3 < 0 => x < -3/2
cmtt => -5(2x+3) - 2(2x+3) - (2x+3) = 16
=> (2x+3)(-5-2-1) = 16
=> 2x+3 = -2
=> 2x = -5
=> x = -5/2 (t/m)
/8(2x+3/ = 16
/2x+3/=2
2x+3=2 hoặc 2x+3=-2
2x=-1 hoặc 2x=-5
x=-1/2 hoặc x=-5/2
bạn trả lời nhé
a) (x - 1)3 - x(x - 2)2 - (x - 2) = 0
<=> x3 - 2x2 + x - x2 + 2x - 1 - x3 + 4x2 - 4x - x + 2 = 0
<=> x2 - 2x + 1 = 0
<=> x2 - 2.x.1 + 12 = 0
<=> (x - 1)2 = 0
x - 1 = 0
x = 0 + 1
x = 1
=> x = 1
a)Ta có : \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)
\(=>\left(x-1\right)^3-\left(x^2-2x\right)\left(x-2\right)-\left(x-2\right)=0\)
\(=>\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+1\right)=0\)
\(=>\left(x-1\right)^3-\left(x-2\right)\left(x-1\right)^2=0\)
\(=>\left(x-1\right)^2\left(x-1-x+2\right)=0\)
\(=>\left(x-1\right)^2=0=>x-1=0=>x=1\)
Vậy x=1
b)(2x+5)(2x-7)-(4x+3)2=16
\(=>4x^2-4x-35-16x^2-24x-9-16=0\)
\(=>-\left(12x^2+28x+60\right)=0\)
\(=>12\left(x^2+\frac{7}{3}x+\frac{5}{3}\right)=0\)
\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)
Lại có \(\left(x+\frac{7}{6}\right)^2\ge0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}\ge\frac{11}{36}>0\)
Vậy ko có giá trị nào của x thỏa mãn đề bài
\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)
bạn HUỲNH CHÂU GIANG sai ở trường hợp thứ 1
(2x+3).8=16
=> 2x+3=2
=>2x=-1
=>x=\(\frac{-1}{2}\)
bạn HUỲNH CHÂU GIANG cũng sai ở phần b ) tương tự sai như phần a)
a, \(5\left(2x+1\right)-2x-1=16\)
\(\Leftrightarrow10x+5-2x-1-16=0\Leftrightarrow8x-12=0\Leftrightarrow x=\frac{3}{2}\)
b, \(4x\left(x+5\right)=3\left(x+5\right)\Leftrightarrow4x\left(x+5\right)-3\left(x+5\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x+5\right)=0\Leftrightarrow x=\frac{3}{4};-5\)
c, \(x\left(x-2\right)=3-6\Leftrightarrow x^2-2x+3=0\)
vô nghiệm
\(a,\Rightarrow3x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\\ b,\Rightarrow\left(x-3\right)\left(2x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\\ c,Đề.sai\\ d,Sửa:\left(x-2\right)^2-16\left(5-2x\right)^2=0\\ \Rightarrow\left[x-2-4\left(5-2x\right)\right]\left[x-2+4\left(5-2x\right)\right]=0\\ \Rightarrow\left(x-2-20+8x\right)\left(x-2+20-8x\right)=0\\ \Rightarrow\left(9x-22\right)\left(18-7x\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{22}{9}\\x=\dfrac{18}{7}\end{matrix}\right.\)