tìm các số x,y biết \(\dfrac{2+6y}{24}=\dfrac{2+10y}{10x}=\dfrac{2+14y}{8x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2}{2^2}=\dfrac{y^2}{3^2}=\dfrac{z^2}{5^2}\rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1`
`-> x/2=y/3=z/5=1`
`-> x=2*1=2, y=3*1=3, z=5*1=5`
=>x/2=y/3=z/5 và x-y+z=4
Áp dụng tính chất của DTSBN, ta được:
x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1
=>x=2; y=3; z=5
bài này bn dùng dảy tỉ số bằng nhau nha ! bn xem lại đề hộ mk nhé
Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x
=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x
=> 2x+3y-1 / 12 = 2x+3y-1 / 6x
=> 12 = 6x => x =2
a: \(=\dfrac{3x}{5\left(x+y\right)}-\dfrac{x}{10\left(x-y\right)}\)
\(=\dfrac{6x\left(x-y\right)-x\left(x+y\right)}{10\left(x-y\right)\cdot\left(x+y\right)}\)
\(=\dfrac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}=\dfrac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)
b: \(=\dfrac{7}{2\left(2x-3\right)\left(2x+3\right)}+\dfrac{1}{x\left(2x+3\right)}-\dfrac{1}{2\left(2x-3\right)}\)
\(=\dfrac{7x+2\left(2x-3\right)-x\left(2x+3\right)}{2x\left(2x+3\right)\left(2x-3\right)}\)
\(=\dfrac{7x+4x-6-2x^2-3x}{2x\left(2x+3\right)\left(2x-3\right)}\)
\(=\dfrac{-2x^2-6}{2x\left(2x+3\right)\left(2x-3\right)}=\dfrac{-x^2-3}{x\left(2x+3\right)\left(2x-3\right)}\)
c: \(=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x}{x^2-x+1}\)
1.
\(y'=12x+\dfrac{4}{x^2}\)
2.
\(y'=\dfrac{3}{\left(-x+1\right)^2}\)
3.
\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)
4.
\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)
\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)
5.
\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)
6.
\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)
1.
Đặt \(x+y=a\Rightarrow y=a-x\)
\(\Rightarrow x^2+2x\left(a-x\right)-14\left(a-x\right)-10x+3\left(a-x\right)^2+27=0\)
\(\Leftrightarrow2x^2-4\left(a+1\right)x+3a^2-10a+27=0\)
\(\Delta'=4\left(a+1\right)^2-2\left(3a^2-10a+27\right)\ge0\)
\(\Leftrightarrow-a^2+14a-25\ge0\)
\(\Rightarrow7-2\sqrt{6}\le a\le7+2\sqrt{6}\)
\(\Rightarrow-10-2\sqrt{6}\le P\le-10+2\sqrt{6}\)
2. Chắc đề là \(a;b>0\) (đảm bảo mẫu dương) chứ ko phải \(a.b>4\)
\(M\ge\dfrac{\left(a+b\right)^2}{a+b-8}=\dfrac{\left(a+b-8+8\right)^2}{a+b-8}=\dfrac{\left(a+b-8\right)^2+16\left(a+b-8\right)+64}{a+b-8}\)
\(M\ge a+b-8+\dfrac{64}{a+b-8}+16\ge2\sqrt{\dfrac{64\left(a+b-8\right)}{a+b-8}}+16=32\)
Dấu "=" xảy ra khi \(a=b=8\)
\(\dfrac{y^2-14y-1}{y^2-4y+4}-y^2-6y\)
\(\Leftrightarrow\dfrac{y^2-14y-1}{y^2-4y+4}-\dfrac{\left(y^2+6y\right)\left(y^2-4y+4\right)}{y^2-4y+4}\)
\(\Rightarrow y^2-14y-1-\left(y^2+6y\right)\left(y^2-4y+4\right)\)
\(\Rightarrow\)y2-14y-1-(y4-4y3+4y2+6y3-24y2+24y)
\(\Rightarrow\)y2-14y-1-y4+4y3-4y2-6y3+24y2-24y
\(\Rightarrow\)-y4-2y3+21y2-38y-1