So sánh :
\(\overline{3a87}+\overline{9a3}+\overline{1a}\) ....... \(\overline{\text{aaa}}+4000\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có :
\(\overline{aaa}:a\)
\(=a.1.111:a.1\)
\(=111\)
b ) Ta có :
\(\overline{abab}:\overline{ab}\)
\(=\overline{ab}.100+\overline{ab}.1:\overline{ab}\)
\(=\overline{ab}.101:\overline{ab}\)
\(=101\)
c ) Ta có :
\(\overline{abcabc}:\overline{abc}\)
\(=\overline{abc}.1000+\overline{abc}.1:\overline{abc}\)
\(=\overline{abc}.1001:\overline{abc}\)
\(=1001\)
Gợi ý :
Cả A và B đều gồm (3 + a) trăm, (b + m + 5) chục và (c + n + 2) đơn vị, vậy A= B
Đây chỉ là gợi ý thôi tớ chưa chắc đúng đâu đấy!
\(A=\overline{a,65}+\overline{4,bc}\)
\(=a+0,65+4+0,1b+0,01c\)
\(=a+4,65+0,1b+0,01c\)
\(B=\overline{a,b}+3,5+\overline{1,2c}\)
\(=a+0,1b+3,5+1,2+0,01c\)
\(=a+4,7+0,1b+0,01c\)
Ta có: A=a+4,65+0,16+0,01c
B=a+4,7+0,1b+0,01c
mà 4,65<4,7
nên A<B
a, ab + bc + ca = abc
ab + bc + ca = a00 + bc
ab + ca = a00
Vì ab và ca là số có hai chữ số nên tổng của chúng ko quá 200 => a = 1
Vì b + a có tận cùng là 0 => b = 9
c + a + nhớ 1 có tận cùng là 0 => c = 8
Vậy a=1,b=9,c=8
b, abc + ab + a = 874
Đổi chỗ các chữ số vào 1 cột, ta được:
abc aaa
+ +
ab => bb
+ +
a c
____ ______
874 874
Do bb + c < 10 nên 847 \(\ge\overline{aaa}\) > 874 - 110 = 764 => \(\overline{aaa}=777\)
=> bb + c = 874 - 777 = 97
Mà \(97\ge\overline{bb}>97-10=87\Rightarrow\overline{bb}=88\)
=> c = 97 - 88 = 9
Vậy a = 7, b = 8, c = 9
Ta có :
\(\overline{aaa}+\overline{bbb}=100a+10a+a+100b+10b+b=111a+111b=111\left(a+b\right)⋮11\left(dpcm\right)\)
Ta có: 3a87+9a3+1a= 3000+a00+87+900+a0+3+10+a
=(3000+87+900+3+10) + ( a.100+ a.10+a)=4000+ a.(100+10+1)
=4000+a.111(1)
aaa+4000= a.111+4000(2)
Từ (1) và (2) suy ra: 3a87+9a3+1a= aaa+4000
Tick cho mik nha!!!