7x-21=0
(3x-5)(x+3)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>-2x=-8
hay x=4
b: =>7x=-21
hay x=-3
c: =>0,25x=-1,5
hay x=-6
d: =>5,3x=6,36
hay x=6/5
e: =>-4x=-12
hay x=3
f: =>-10x=-10
hay x=1
g: =>2x+2-3-2x=0
=>-1=0(vô lý)
h: =>3-3x+4x-3=0
=>x=0
a,
\(3-x=x-5\\ \Leftrightarrow3x-x+5=0\Leftrightarrow2x+5=0\)
\(\Rightarrow x=-\dfrac{5}{2}\)
b, \(\Rightarrow x=-\dfrac{21}{7}=-3\)
c, \(\Leftrightarrow x=\left(0-1,5\right):0,25=-6\)
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
Mấy cái này chuyển vế đổi dấu là xong í mà :3
1,
16-8x=0
=>16=8x
=>x=16/8=2
2,
7x+14=0
=>7x=-14
=>x=-2
3,
5-2x=0
=>5=2x
=>x=5/2
Mk làm 3 cau làm mẫu thôi
Lúc đăng đừng đăng như v :>
chi ra khỏi ngt nản
từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại
Bài 5 :
f, bạn xem lại đề hay là tìm x chứa tham số a ?
g, \(x^2+3x-\left(2x+6\right)=0\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow x=-3;x=2\)
h, \(5x+20-x^2-4x=0\Leftrightarrow5\left(x+4\right)-x\left(x+4\right)=0\)
\(\Leftrightarrow\left(5-x\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=5\)
m, \(x^3-5x^2-x+5=0\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\Leftrightarrow x=\pm1;x=5\)
n, \(x\left(x-3\right)-7x+21=0\Leftrightarrow x\left(x-3\right)-7\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-3\right)=0\Leftrightarrow x=3;x=7\)
c,\(x^2-1=2x\left(x+1\right)\)
⇔\(\left(x+1\right)\left(x-1\right)=2x\left(x+1\right)\)
⇔\(\left(x+1\right)\left(x-1\right)-2x\left(x+1\right)=0\)
⇔\(\left(x+1\right)\left(-x-1\right)=0\)
⇔\(\left[{}\begin{matrix}x+1=0\\-x-1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\)
Vậy...
a) Ta có: \(\left(4x-10\right)\left(24+3x\right)=0\)
\(\Leftrightarrow6\left(2x-5\right)\left(8+x\right)=0\)
mà 6≠0
nên \(\left[{}\begin{matrix}2x-5=0\\8+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-8\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5}{2};-8\right\}\)
b) Ta có: \(7x-21+x\left(x-3\right)=0\)
\(\Leftrightarrow7\left(x-3\right)+x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\7+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)
Vậy: S={3;-7}
c) Ta có: \(x^2-1=2x\left(x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-x-1\right)=0\)
\(\Leftrightarrow-\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}
\(x\left(3x-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\3x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{5}{3}\right\}\)
a) \(x\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
b) \(3x^2-27=0\)
\(\Leftrightarrow3x^2=27\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
c) \(\left(x-5\right)^2=x-5\)
\(\Leftrightarrow x^2-10x+25-x+5=0\)
\(\Leftrightarrow x^2-11x+30=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)
d) \(2\left(x+7\right)-x^2-7x=0\)
\(\Leftrightarrow2x+14-x^2-7x=0\)
\(\Leftrightarrow-x^2-5x+14=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)
e)\(7x\left(x-3\right)+2.3x=0\)
\(\Leftrightarrow7x^2-21x+6x=0\)
\(\Leftrightarrow7x^2-15x=0\)
\(\Leftrightarrow x\left(7x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{15}{7}\end{cases}}}\)
#H
a. \(7x-21=0\)
\(\Leftrightarrow7x=21\)
\(\Leftrightarrow x=3\)
b. \(\left(3x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-3\end{matrix}\right.\)
\(7x-21=0\)
\(\Leftrightarrow7\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Tập nghiệm của phương trình là \(S=\left\{3\right\}\)
\(\left(3x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=5\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-3\end{matrix}\right.\)
Tập nghiệm của phương trình là : \(S=\left\{\dfrac{5}{3};-3\right\}\)