CMR: ( 210 +211+ 212) \(⋮\)7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{2^{10}+2-1}{2^9+1}=\frac{2(2^9+1)-1}{2^9+1}=2-\frac{1}{2^9+1}$
$B=\frac{2^{12}+1}{2^{11}+1}=\frac{2(2^{11}+1)-1}{2^{11}+1}=2-\frac{1}{2^{11}+1}$
Vì $2^9+1< 2^{11}+1\Rightarrow \frac{1}{2^9+1}> \frac{1}{2^{11}+1}$
$\Rightarrow 2-\frac{1}{2^9+1}< 2-\frac{1}{2^{11}+1}$
$\Rightarrow A< B$
6: =x^2-7xy+5xy-35y^2
=x(x-7y)+5y(x-7y)
=(x-7y)(x+5y)
7: =x^2-2xy-8xy+16y^2
=x(x-2y)-8y(x-2y)
=(x-2y)(x-8y)
8: =3x^2-6xy-4xy+8y^2
=3x(x-2y)-4y(x-2y)
=(x-2y)(3x-4y)
9: =4x^2+4xy+y^2-16y^2
=(2x+y)^2-16y^2
=(2x+y-4y)(2x+y+4y)
=(2x-3y)*(2x+5y)
10: =2(x^2+5xy+4y^2)
=2(x+y)(x+4y)
11: =5x(x+2y+y^2)
ta có
\(\frac{x+1}{212}+\frac{x+2}{211}+\frac{x+3}{210}+\frac{x+4}{209}=-4\)\(-4\)
\(\Rightarrow\left(\frac{x+1}{212}+1\right)+\left(\frac{x+2}{211}+1\right)+\left(\frac{x+3}{210}+1\right)+\left(\frac{x+4}{209}+1\right)=-4+4\)
=> \(\frac{x+1+212}{212}+\frac{x+2+211}{211}+\frac{x+3+210}{210}+\frac{x+4+209}{209}\) =\(0\)
=> \(\frac{x+213}{212}+\frac{x+213}{211}+\frac{x+213}{210}+\frac{x+213}{209}\)=\(0\)
=> (x+213) \(\left(\frac{1}{212}+\frac{1}{211}+\frac{1}{210}+\frac{1}{209}\right)\)=0
mà\(\left(\frac{1}{212}+\frac{1}{211}+\frac{1}{210}+\frac{1}{209}\right)\)\(\ne0\)
=>x+213=0 => x=-213
vậy x= -213
\(\frac{x+1}{212}+\frac{x+2}{211}+\frac{x+3}{210}+\frac{x+4}{209}=-4\)
\(\Rightarrow\frac{x+1}{212}+1+\frac{x+2}{211}+1+\frac{x+3}{210}+1+\frac{x+4}{209}+1=-4+4=0\)
\(\Rightarrow\frac{x+213}{212}+\frac{x+213}{211}+\frac{x+213}{210}+\frac{x+213}{209}=0\)
\(\Rightarrow\left(x+213\right)\left(\frac{1}{212}+\frac{1}{211}+\frac{1}{210}+\frac{1}{209}\right)=0\)
\(\Rightarrow x+213=0\Leftrightarrow x=-213\)
6 + 4 = 210
9 + 8 = 117
3 + 2 = 15
7 + 5 = 212
7 + 6 = 13
Toán đố mẹo chớ j! làm sao thì làm chớ 7 + 6 = 13 rùi! =)))
6+4=210
7+5=212
9+4=513
7+6=113
5+2=37
7+4=???
trl
7 + 4= 311
Ta có : 210 +211 + 212 = 210(1+2+4) = 210 . 7 \(⋮\)7
Ta có: 2^10+2^11+2^12
=2^10(1+2+2^2)
=2^10.7
=>2^10.7 chia hết 7
Vậy 2^10+2^11+2^12 chia hết 7