K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

1) \(M=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}=256\)

2) \(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow2x+2y=6x-3y\Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$

$\Rightarrow (\frac{1}{x}+\frac{1}{y})+(\frac{1}{z}-\frac{1}{x+y+z})=0$

$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$

$\Leftrightarrow (x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)})=0$

$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y)(y+z)(x+z)=0$

$\Leftrightarrow x=-y$ hoặc $y=-z$ hoặc $z=-x$

Nếu $x=-y$ thì:

$P=\frac{3}{4}+[(-y)^8-y^8](y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}+0.(y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}$

Nếu $y=-z$ thì:

$P=\frac{3}{4}+(x^8-y^8)[(-z)^9+z^9](z^{10}-x^{10})=\frac{3}{4}+(x^8-y^8).0.(z^{10}-x^{10})=\frac{3}{4}$

Nếu $z=-x$ thì:

$P=\frac{3}{4}+(x^8-y^8)(y^9+z^9)[(-x)^{10}-x^{10}]=\frac{3}{4}+(x^8-y^8)(y^9+z^9).0=\frac{3}{4}$

17 tháng 7 2017

bài 1) ta có : \(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow2\left(x+y\right)=3\left(2x-y\right)\)

\(\Leftrightarrow2x+2y=6x-3y\Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)

vậy \(\dfrac{x}{y}=\dfrac{5}{4}\)

18 tháng 7 2017

bài 1

\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow\dfrac{2.\dfrac{x}{y}-1}{\dfrac{x}{y}+1}=\dfrac{2.\dfrac{x}{y}+2-3}{\dfrac{x}{y}+1}=2-\dfrac{3}{\dfrac{x}{y}+1}=\dfrac{2}{3}\)

\(2-\dfrac{2}{3}=\dfrac{4}{3}=\dfrac{3}{\dfrac{x}{y}+1}\)

\(\left(\dfrac{x}{y}+1\right)=\dfrac{9}{4}\Rightarrow\dfrac{x}{y}=\dfrac{9}{4}-\dfrac{4}{4}=\dfrac{5}{4}\)

a: =>-2x=90/91

hay x=-45/91

b: =>2x=-7

hay x=-7/2

c: ->-3x=-12

hay x=4

9 tháng 5 2022

Bài 1:

+) \(\dfrac{7}{8}\times y=\dfrac{3}{2}+\dfrac{6}{4}=3\)

\(y=3:\dfrac{7}{8}=\dfrac{24}{7}\)

+) \(\dfrac{1}{y}\times\left(\dfrac{2}{5}+\dfrac{1}{5}\right)=\dfrac{10}{3}\)

\(\dfrac{1}{y}=\dfrac{10}{3}:\dfrac{3}{5}=\dfrac{50}{9}\)

\(y=\dfrac{9}{50}\)

9 tháng 5 2022

Bài 2:

+) \(=\dfrac{2}{5}\times\left(\dfrac{4}{7}+\dfrac{3}{7}\right)\)

\(=\dfrac{2}{5}\times\dfrac{7}{7}=\dfrac{2}{5}\)

+) \(\dfrac{2}{9}:\dfrac{2}{3}:\dfrac{3}{9}\)

\(\dfrac{2}{9}\times\dfrac{3}{2}\times\dfrac{9}{3}=1\)

NV
22 tháng 1

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2=2-xy\)

\(\Rightarrow2-xy\ge0\)

\(\Rightarrow xy\le2\)

\(A_{max}=2\) khi \(\left(x;y\right)=\left(1;2\right);\left(-1;-2\right)\)

17 tháng 8 2023

Ta thấy \(2x^2< 4\) \(\Leftrightarrow x^2< 2\) \(\Leftrightarrow x^2=1\) (do \(x\ne0\))

Thế vào pt đề bài, ta có \(3+\dfrac{y^2}{4}=4\) 

\(\Leftrightarrow\dfrac{y^2}{4}=1\)

\(\Leftrightarrow y^2=4\)

\(\Leftrightarrow y=\pm2\)

Vậy, các cặp số (x; y) thỏa ycbt là \(\left(1;2\right);\left(-1;-2\right);\left(1;-2\right);\left(-1;2\right)\)

 

17 tháng 8 2023

a

NV
4 tháng 12 2021

\(\dfrac{x}{8}-\dfrac{1}{4}=\dfrac{1}{y}\)

\(\Leftrightarrow\dfrac{x-2}{8}=\dfrac{1}{y}\)

\(\Leftrightarrow x-2=\dfrac{8}{y}\)

Do \(x-2\in Z\Rightarrow\dfrac{8}{y}\in Z\)

\(\Rightarrow y=Ư\left(8\right)\)

\(\Rightarrow y=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow x=\left\{1;0;-2;-6;10;6;4;3\right\}\)