Cho tam giác ABC, kẻ BE ⊥AC và CF ⊥ AB. Biết BE=CF=8cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a) Chứng minh tam giác ABC cân
b) Tính độ dài cạnh đáy BC
c) BE và CF cắt nhau tại O. Nối OA và CF. Chứng minh AO là đường trung trực của đoạn thẳng EF
a)Xét △ABE có:
\(\widehat{ABE}+\widehat{BEA}+\widehat{EAB}=180^0\left(1\right)\)
Xét △ACF có:
\(\widehat{ACF}+\widehat{CFA}+\widehat{FAC}=180^0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\widehat{ABE}+\widehat{BEA}+\widehat{EAB}=\)\(\widehat{ACF}+\widehat{CFA}+\widehat{FAC}\)
Mà ta có:
\(\widehat{BEA}=\widehat{CFA}=90^0\)
\(\widehat{EAB}=\widehat{FAC}\)
\(\Rightarrow\widehat{ABE}=\widehat{ACF}\)
Xét △ABE và △ACF có:
\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)
BE=CF (gt)
\(\widehat{BEA}=\widehat{CFA}\left(=90^0\right)\)
⇒△ABE = △ACF (gcg)
⇒AB=AC (2 cạnh tương ứng)
⇒△ABC cân tại A (đpcm)
b)Theo bài ra, ta có:
BF; BC tỉ lệ với 3; 5
\(\Rightarrow\frac{BF}{3}=\frac{BC}{5}=k\Rightarrow\left\{{}\begin{matrix}BF=3k\\BC=5k\end{matrix}\right.\)
Áp dụng định lí Pytago vào △BFC vuông tại F, ta có:
\(BC^2=BF^2+FC^2\Rightarrow\left(5k\right)^2=\left(3k\right)^2+8^2\Rightarrow25k^2=9k^2+64\Rightarrow25k^2-9k^2=64\Rightarrow16k^2=64\Rightarrow k^2=4\Rightarrow k=2\left(k>0\right)\)\(\Rightarrow BC=5k=5.2=10\left(cm\right)\)
c)Gọi giao điểm của AO và EF là H
Xét △AFO vuông tại F và △AEO vuông tại E có:
AO chung
AF=AE (△ACF = △ABE )
⇒△AFO =△AEO (cạnh huyền- cạnh góc vuông)
\(\Rightarrow\widehat{FAO}=\widehat{EAO}\)(2 góc tương ứng)
Xét △AFH và △AEH có:
AF=AE (△ACF = △ABE )
\(\widehat{FAH}=\widehat{EAH}\left(cmt\right)\)
AH chung
⇒△AFH= △AEH (cgc)
⇒\(\widehat{AHF}=\widehat{AHE}=90^0\) và FH=EH
⇒AO là đường trung trực của EF (đpcm)