Cho tam giác ABC nhọn. Kẻ BD vuông góc với AC tại D, CE vuông góc AB tại E. Trên tia đối của tia BD lấy điểm H sao cho BH = AC, trên tia đối của tia CE lấy điểm K sao cho CK = AB. Chứng minh rằng:
a) \(\widehat{ABD}=\widehat{ACE}\)
b) AH = AK, AH ⊥ AK
Ta có: ^ACK=^A+^AEC=^A+90o( tính chất góc ngoài)
^ABH=^A+^ADB=^A+90o( tính chất góc ngoài)
⇒^ACK=^ABH
Xét tam giác ABH và tam giác KCA có:
⇒ΔABH=ΔKCA(c−g−c){
⇒AH=AK(cạnh tương ứng)
=> đpcm
nhung nhăng