K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

ta có : \(\left(m-1\right)\left(mx+1\right)>0\)\(\Leftrightarrow m^2x+m-mx-1>0\)

\(\Leftrightarrow m^2x-mx>1-m\) \(\Leftrightarrow x\left(m^2-m\right)>1-m\)

(*) \(m^2-m>0\Leftrightarrow m^2>m\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

\(\Rightarrow x\left(m^2-m\right)>1-m\Leftrightarrow x>\dfrac{1-m}{m^2-m}=\dfrac{-1}{m}\)

\(\Rightarrow S=\left(\dfrac{-1}{m};+\infty\right)\)

(*) \(m^2-m< 0\Leftrightarrow m^2< m\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-1\\m\ne0\end{matrix}\right.\Leftrightarrow-1< m< 1+m\ne0\)

\(\Rightarrow x\left(m^2-m\right)>1-m\Leftrightarrow x< \dfrac{1-m}{m^2-m}=\dfrac{-1}{m}\) \(\Rightarrow S=\left(-\infty;\dfrac{-1}{m}\right)\)

(*) \(m^2-m=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

+ \(m=0\) \(\Rightarrow x\left(m^2-m\right)>1-m\Leftrightarrow0>1\left(vôlí\right)\)

+ \(m=1\)

\(\Rightarrow x\left(m^2-m\right)>1-m\Leftrightarrow0>0\left(vôlí\right)\)

\(\Rightarrow S=\varnothing\)

vậy ................................................................................................................

9 tháng 12 2021

Với \(m=0\)

\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)

PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)

PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)

18 tháng 1 2019

  m x   -   m 2   >   2 x   -   4   ⇔ (m - 2)x > (m - 2)(m + 2)

    Nếu m > 2 thì m – 2 > 0, bất phương trình có nghiệm là x > m + 2;

    Nếu m < 2 thì m – 2 < 0, bất phương trình có nghiệm là x < m + 2;

    Nếu m = 2 thì bất phương trình trở thành 0x > 0, bất phương trình vô nghiệm.

25 tháng 2 2016

\(mx^2+\left(m+1\right)x-2m\le0\) (1)

Nếu \(m=0\) thì dễ thấy (1) có nghiệm \(x\le0\)

Xét \(m\ne0\) Khi đó (1) là bất phương trình bậc hai với a=m. 

Ngoài ra, biệt thức

\(\Delta=9m^2+2m+1=\left(3m+\frac{1}{3}\right)^2+\frac{8}{9}>0\)  \(\curlyvee m\in R\). Từ đó ta có ngay kết luận :

- Khi m < 0, bất phương trình (1) có tập nghiệm

T(1) = \(\left(x;\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)\(\cup\)\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};+\infty\right)\)

- Khi m = 0, bất phương trình (1) có tập nghiệm T(1) =R+

- Khi m>0, bất phương trình (1) có tập nghiệm

T(1)=\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)

25 tháng 2 2016

oho

30 tháng 9 2019

Điều kiện của bất phương trình là x ≥ 0

    Nếu m ≤ 1 thì m - 1 ≤ 0, bất phương trình đã cho nghiệm đúng với mọi x ≥ 0

    Nếu m > 1 thì m – 1 > 0, bất phương trình đã cho tương đương với √x ≤ 0 ⇔ x = 0

    Vậy: Nếu m ≤ 1 thì tập nghiệm của bất phương trình là [0; +∞)

     Nếu m > 1 thì tập nghiệm của bất phương trình là {0}

16 tháng 1 2021

\(\left(x+1\right)\left(mx-3\right)=0\)

\(TC:\)

\(\left(+\right)x+1=0\Leftrightarrow x=-1\)

\(\left(+\right)mx-3=0\left(1\right)\)

\(BL:\)

\(\left(-\right)Với:m=0\\ \left(1\right)\Leftrightarrow0x-3=0\\ \Rightarrow PTVN\)

 \(\left(-\right)Với:m\ne0\\ \left(1\right)\Leftrightarrow mx-3=0\\ \Leftrightarrow x=\dfrac{3}{m}\)

 

có: \(\left(x+1\right).\left(mx-3\right)=0\) 

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\mx-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0-1=-1\\mx=0+3=3\end{matrix}\right.\) 

Có x= -1 nên mx = (-3).(-1) => m= -3

Vậy x=-1 và m = -3