K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow x+2-3xm-m=5\)

\(\Leftrightarrow x\left(1-3m\right)=5+m-2=m+3\)

Để đây là phương trình bậc nhất thì 1-3m<>0

hay m<>1/3

b: Khi m=1 thì pt sẽ là \(x\left(1-3\right)=1+3=4\)

=>x=-2

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Bài 1:
$2x^4-3x^2-5=0$

$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$

$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$

$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)

$\Leftrightarrow x^2=\frac{5}{2}$

$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Bài 2:

a. Khi $m=1$ thì pt trở thành:

$x^2-6x+5=0$

$\Leftrightarrow (x^2-x)-(5x-5)=0$

$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$

$\Leftrightarrow x=1$ hoặc $x=5$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$

$\Leftrightarrow m^2+14m+1\geq 0(*)$

Áp dụng định lý Viet:

$x_1+x_2=m+5$
$x_1x_2=-m+6$

Khi đó:
$x_1^2x_2+x_1x_2^2=18$

$\Leftrightarrow x_1x_2(x_1+x_2)=18$

$\Leftrightarrow (m+5)(-m+6)=18$

$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$

$\Leftrightarrow (m+3)(m-4)=0$

$\Leftrightarrow m=-3$ hoặc $m=4$

Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.

 

a: Để phương trình là phươg trình bậc nhất một ẩn thì m-2<>0

hay m<>2

b: Ta có: 3x+7=2(x-1)+8

=>3x+7=2x-2+8

=>3x+7=2x+6

=>x=-1

Thay x=-1 vào (1), ta được:

-2(m-2)+3=3m-13

=>-2m+4+3=3m-13

=>-2m+7=3m-13

=>-5m=-20

hay m=4(nhận)

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

2 tháng 2 2021

a) PT trên là PT bậc nhất \(\Leftrightarrow m-2 \ne 0 \Leftrightarrow m \ne 2\)

b) \(m=5 \Rightarrow 3x+3=0 \Leftrightarrow x=-1\)

Vậy \(x=-1\) khi \(m=5\).

2 tháng 2 2021

a/ Với \(m\ne2\) thì pt đã cho là pt bậc nhất một ẩn

b/ Thay m = 5 vàopt đã chota được :

\(3x+3=0\)

\(\Leftrightarrow3\left(x+1\right)=0\)

\(\Leftrightarrow x=-1\)

a: =>m^2x-m^3-x+3m-2=0

=>x(m^2-1)=m^3-3m+2

=>x(m-1)(m+1)=m^3-m-2m+2=m(m-1)(m+1)-2(m-1)=(m-1)^2*(m+2)

Để đây là pt bậc nhất 1 ẩn thì (m-1)(m+1)<>0

=>m<>1 và m<>-1

b: Khi m=0 thì pt sẽ là x+2=0

=>x=-2

c: Khi x=3 thì pt sẽ là:

3(m^2-1)=m^3-3m+2

=>(m-1)^2(m+1)-3(m-1)(m+1)=0

=>(m-1)(m+1)(m-1-3)=0

=>(m-1)(m+1)(m-4)=0

=>\(m\in\left\{1;-1;4\right\}\)

 

a: \(\Leftrightarrow x+2-3xm-m=5\)

\(\Leftrightarrow x\left(1-3m\right)=5+m-2=m+3\)

Để đây là pt bậc nhất một ẩn thì 1-3m<>0

hay m<>1/3

b: Khi m=1 thì \(x\left(1-3\right)=1+3=4\)

=>-2x=4

hay x=-2

2 tháng 3 2018

a. Ta có: x+2-m(3x+1)=5

\(\Leftrightarrow\)x(1-3m)-3-m=0 (1)

Để pt trên là pt bậc nhất thì (1-3m) khác 0

\(\Rightarrow m\ne\dfrac{1}{3}\)

b. Thay m=1 vào (1) ta có:

x(1-3.1)-3-1=0

\(\Leftrightarrow\) x=-2