K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

Ta có: ab=(a+b)2

=>a.10+b=(a+b).(a+b)

=>(a+b)+9a=(a+b).(a+b)

=>9a=(a+b).(a+b)-(a+b)

=>9a=(a+b-1).(a+b)

Vì a+b-1 và a+b là 2 số tự nhiên liên tiếp

=>(a+b-1).(a+b) chia hết cho 2

=>9a chia hết cho 2

Mà (9,2)=1

=>a chia hết cho 2

Mà 0<a<10

=>a=2,4,6,8

*Với a=2=>9.2=(2+b-1).(2+b)

=>18=(b+1).(b+2)

Vì 18 không phải la tích của 2 số tự nhiên liên tiếp

=>Vô lí

*Với a=4=>9.4=(4+b-1).(4+b)

=>36=(b+3).(b+4)

Vì 36 không phải là tích của 2 số tự nhiên liên tiếp

=>Vô lí

*Với a=6=>9.6=(6+b-1).(6+b)

=>54=(b+5).(b+6)

Vì 54 không phải là tích của 2 số tự nhiên liên tiếp

=>Vô lí

*Với a=8=>9.8=(8+b-1).(8+b)

=>72=(b+7).(b+8)=8.9

Vì b+7<b+8

=>b+7=8=>b=1

Vậy ab=81

b: =>a=5-b

\(\Leftrightarrow\left(5-b\right)^2+b^2=13\)

\(\Leftrightarrow2b^2-10b+25-13=0\)

\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)

hay \(b\in\left\{2;3\right\}\)

\(\Leftrightarrow a\in\left\{3;2\right\}\)

4 tháng 1 2022

b: =>a=5-b

⇔(5−b)2+b2=13⇔(5−b)2+b2=13

⇔2b2−10b+25−13=0⇔2b2−10b+25−13=0

⇔(b−2)(b−3)=0⇔(b−2)(b−3)=0

hay b∈{2;3}b∈{2;3}

⇔a∈{3;2}⇔a∈{3;2}

 

6 tháng 4 2017

bai 1

=ax5-x5-9xy-4xy-7x

=ax5-(5x+7x)-(9xy+4xy)

=5ax-12x-13xy

2

M=4a+ab-2b+2a-2b+ab

=6a+2ab-4b

n=6a+2b-ab+2a

=8a+2b-ab

m-n=6a+2ab-4b-8a-2b+ab

=3ab-2a-6b

27 tháng 2 2022

à há biết rồi

7 tháng 2 2018

18 tháng 1 2018

với a = b thì a - b = 0

ở bước (a+b)(a-b)=b(a-b) sang bước suy ra a+b=b bn đã chia cả hai vế cho a-b=0 là không được 

Vậy chỗ sai là không có phép chia cho 0 đâu nhé

P/s: Mk chưa học tới lớp 9, nếu sai mong bn thông cảm. :))

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

31 tháng 7 2019

Biến đổi vế trái ta có:

VT = (a + b)( a 2  – ab +  b 2 ) + (a – b)( a 2  + ab +  b 2 )

=  a 3  +  b 3  +  a 3  –  b 3  = 2 a 3  = VP

Vế trái bằng vế phải nên đẳng thức được chứng minh.

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
17 tháng 7 2021

VP `=(a+b)(a^2-ab+b^2)`

`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`

`=a^3+b^3`

.

VP `=(a-b)(a^2+ab+b^2)`

`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`

`=a^3-b^3`

17 tháng 7 2021

đúng rồi mà