K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

\(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy\)

\(\Leftrightarrow B=16x^2y^2+12\left(x^3+y^3\right)+9xy+25xy=16x^2y^2+12\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+34xy=16t^2-2t+12\) Với t = xy

\(B=\left(4t-\dfrac{1}{4}\right)^2+\dfrac{191}{16}\)

Vì: \(0< t=xy\le\left(\dfrac{x+y}{2}\right)^2=\dfrac{1}{4}\Rightarrow\dfrac{-1}{4}< 4t-\dfrac{1}{4}\le\dfrac{3}{4}\)

Vậy \(\dfrac{191}{16}\le B\le\dfrac{25}{2}\)

8 tháng 10 2020

\(S=16x^2y^2+12\left(x^3+y^3\right)+9xy+25xy\)

\(=16x^2y^2+12\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+34xy\)

\(=16x^2y^2+12-36xy+34xy\)

\(=16x^2y^2-2xy+12\)

\(S=16x^2y^2-2xy+12=16x^2y^2-2xy+\frac{1}{16}+\frac{191}{16}=\left(4xy-\frac{1}{4}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)

\(\Rightarrow MinS=\frac{191}{16}\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\4xy-\frac{1}{4}=0\\x,y\ge0\end{matrix}\right.\)\(\Leftrightarrow\left(x;y\right)=\left(\frac{2\pm\sqrt{3}}{4};\frac{2\mp\sqrt{3}}{4}\right)\)

\(S=16x^2y^2-2xy+12=2xy\left(8xy-1\right)+12\le2.\frac{\left(x+y\right)^2}{4}\left[8.\frac{\left(x+y\right)^2}{4}-1\right]+12=\frac{25}{2}\)

\(\Rightarrow MinS=\frac{25}{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x=y\\x,y\ge0\end{matrix}\right.\Leftrightarrow x=y=\frac{1}{2}\)

8 tháng 10 2020

bạn giúp mình mấy câu mình mới hỏi đc ko ?

8 tháng 12 2016
  • \(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy=16x^2y^2+12\left(x^3+y^3\right)+34xy\)

\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)

\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)

\(=16x^2y^2-2xy+12\)

Đặt \(t=xy\) thì \(B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)

Vậy min B \(=\frac{191}{16}\) khi \(\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)

  • Như trên ta có : \(B=16\left(xy-\frac{1}{16}\right)^2+\frac{191}{16}\)

Mặt khác, áp dụng BĐT Cauchy , ta có : \(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)

Suy ra : \(B\le16\left(\frac{1}{4}-\frac{1}{16}\right)^2+\frac{191}{16}=\frac{25}{2}\)

Đẳng thức xảy ra khi x = y = 1/2

Vậy max B = 25/2 khi (x;y) = (1/2;1/2)

1 tháng 8 2020

tôi cũng nghĩ là dùng Phương pháp dồn biến tìm MAX , MIN

1 tháng 8 2020

\(P=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy\)

\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)

\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)

\(=16x^2y^2-2xy+12\)

Đặt  \(t=xy\Rightarrow B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc  \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)

Vậy  \(B_{min}=\frac{191}{16}\Leftrightarrow\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)

3 tháng 5 2020

ctv hỏi bài

3 tháng 5 2020

Thái đức anh Ơ CTV là không được hỏi bài à ??? Bài này tôi làm ra lâu rồi,đăng lên chơi vui thôi nhé ! Không làm thì đừng có mà spam lung tung câu hỏi của tôi

NV
13 tháng 8 2021

Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

(Cách chứng minh tại đây):

Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y  - Hoc24

\(\Rightarrow x+y=0\)

Do đó \(P=100\)

18 tháng 10 2021

x,y thuộc N ôk

NV
6 tháng 2 2021

\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{\left(2y\right)^2+2020}\right)=2020\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+\sqrt{\left(2y\right)^2+2020}=\sqrt{x^2+2020}-x\\x+\sqrt{x^2+2020}=\sqrt{\left(2y\right)^2+2020}-2y\end{matrix}\right.\)

\(\Rightarrow x+2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}=-x-2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}\)

\(\Leftrightarrow2\left(x+2y\right)=0\)

\(\Leftrightarrow x=-2y\)

\(\Rightarrow B=2y^2-8y^2+3y^2-2y+3y+15\)

\(\Rightarrow B=-3y^2+y+15=-3\left(y-\dfrac{1}{6}\right)^2+\dfrac{181}{12}\)

\(B_{max}=\dfrac{181}{12}\) khi \(y=\dfrac{1}{6}\)

6 tháng 2 2021

yeu