Tìm số tự nhiên n để 2n+3 chia hết cho n-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n + 3 chia hết cho n - 2
=> 2n - 4 + 7 chia hết cho n - 2
n - 2 thuộc U(7) = {1;7}
n - 2 = 1 ; n = 3
n - 2 = 7 ; n = 9
đây là toán lớp 6 nha bn
a mk chịu
b
vì 2n-3 : 2n+2
suy ra 2(2n-3) : 2n+2
4n-6: 2n+2
mà 2(2n+2):2n+2
4n+4 :2n+2
4n+ 4 -(4n-6) : 2n+2
.còn lại tự tính
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
a,ta có :n+4chia hết n+3
n+3+1 chia hết n+3
mà n+3 chia hết n+3
suy ra 1 chia hết n+3
n+3 thuộc{1,-1}
n+3=1 n+3= -1
n =1-3 n = -1 -3
n = -2(loại ) n = -4
vậy n thuộc tập rỗng
Bạn đăng từng bài 1 thui chứ nếu bạn đăng nhìu như thế này thì khó có ai có thể trả lời hết được bạn ạ
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
\(2n+7=\left(n+3\right)+\left(n+4\right)=\left(n+3\right)+\left(n+3\right)+1\)
\(Ta\) \(Co\)\(:\) \(\frac{\left(n+3\right)+\left(n+3\right)+1}{n+3}\)\(=2+\frac{1}{n+3}\)
\(De\) \(\left(2n+7\right)^._:\left(n+3\right)\) \(=>\)\(1chia\vec{ }het\vec{ }cho\vec{ }n+3\)
=>n+3 \(\in U_{\left(1\right)}\)
ta co : \(U_{\left(1\right)}\in\left(1;-1\right)\)
ta co bang :
n+3 | 1 | -1 |
n | -2 | -4 |
vi n \(\in\)N
=>n khong co gia tri
\(a,n^2+4n+96⋮n+1\)
\(\Rightarrow n^2+n+3n+96⋮n+1\)
\(\Rightarrow n\left(n+1\right)+3n+3+93\)
\(\Rightarrow n\left(n+1\right)+3\left(n+1\right)+93⋮n+1\)
\(\Rightarrow\left(n+3\right)\left(n+1\right)+93⋮n+1\)
\(\Rightarrow93⋮n+1\)
=> Tự lập bảng nha OK
Phần b tương tự