K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

a/

\(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{\left(3-x\right)\left(3+x\right)}\)

\(\Leftrightarrow\dfrac{\left(x^2-x\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2.\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{-\left(7x^2-3x\right)}{\left(x-3\right)\left(x+3\right)}\) \(\Leftrightarrow x^3-4x^2+3x-x^3-3x^2=7x^2+3x\)

\(\Leftrightarrow x^3-4x^2+3x-x^3-3x^2-7x^2-3x=0\)

\(\Leftrightarrow-14x^2=0\)

\(\Leftrightarrow x=0\)

30 tháng 4 2018

\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)

\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)

\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)

Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)

a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

=>x=3 hoặc x=-10/7

b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)

\(\Leftrightarrow x^2-12x-51+13x+39=0\)

\(\Leftrightarrow x^2+x-12=0\)

=>(x+4)(x-3)=0

=>x=-4

Ta có: \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)

\(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=3x-7x^2\)

\(\Leftrightarrow x^3-3x^2-x^2+3x-x^3-3x^2-3x+7x^2=0\)

\(\Leftrightarrow0x=0\)(luôn đúng)

28 tháng 11 2023

\(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\\ \Leftrightarrow\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=-\dfrac{7x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ đkxđ:\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\\ \Leftrightarrow\dfrac{\left(x^2-x\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{7x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\dfrac{x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\dfrac{0}{\left(x-3\right)\left(x+3\right)}=0\\ \Rightarrow0=0\left(luon.dung\right)\)

28 tháng 5 2021

ĐK: ` x \ne \pm 3`

`(x^2-x)/(x+3)-(x^2)/(x-3)=(7x^2-3x)/(9-x^2)`

`<=> (x^2-x)(x-3)-x^2 (x+3) = -(7x^2-3x)`

`<=> −7x^2+3x=-7x^2+3x`

`<=> 0x=0 forall x`

Vậy `S=RR \\ {+-3}`.

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

30 tháng 3 2022

a)\(\dfrac{7x-1}{2}+2x=\dfrac{16-x}{3}\)

\(\dfrac{\left(7x-1\right).3}{2.3}+\dfrac{2x.6}{6}=\dfrac{\left(16-x\right)2}{3.2}\)

khử mẫu 

=> (7x-1).3+12x=(16-x).2

=>21x-3+12x=-2x+32

=>21x-3+12x+2x-32=0

=>35x-35=0

 

30 tháng 3 2022

 

b)\(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)

ĐKXĐ: x khác +-2

\(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)

khử mẫu

(x+1).(x+2)+(x-1)(x-2)=2x2+4

=>x2+x+2+x+2+x2-2x-x+2=2x2+4

=>x2+x+2+x+2+x2-2x-x+2-2x2-4=0

=>(x2+x2-2x2)+(x+x-2x-x)+(2+2+2-4)=0

=>-x+2=0

=>-x=-2

=>x=2(loại)

vậy pt vô nghiệm

1: Ta có: \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)

\(\Leftrightarrow5x+20+12x-28=7x+2\)

\(\Leftrightarrow17x-7x=2+8=10\)

hay x=1

2: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)

\(\Leftrightarrow\dfrac{6x}{36}+\dfrac{4\left(1-3x\right)}{36}=\dfrac{3\left(-x+1\right)}{36}\)

\(\Leftrightarrow6x+4-12x=-3x+3\)

\(\Leftrightarrow-6x+3x=3-4\)

hay \(x=\dfrac{1}{3}\)

3: Ta có: \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)

\(\Leftrightarrow4x-12-x-2=6x-3\)

\(\Leftrightarrow3x-14-6x+3=0\)

\(\Leftrightarrow-3x=11\)

hay \(x=-\dfrac{11}{3}\)

4: Ta có: \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)

\(\Leftrightarrow3x-6-8x-12=x+6\)

\(\Leftrightarrow-5x-x=6+18\)

hay x=-4

5: Ta có: \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)

\(\Leftrightarrow6x-3+2x-6=-1\)

\(\Leftrightarrow8x=8\)

hay x=1