Tính nhanh giá trị biểu thức: \(A=\left(50^2+48^2+46^2+...+4^2+2^2\right)-\left(49^2+47^2+45^2+...+5^2+3^2+1^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(502+482+...+22) - (492+472+...+12)
= (502-492) + (482-472) + ... + (22-12)
= (50+49)(50-49) + (48+47)(48-47) + ... + (2+1)(2-1)
= 50+49+48+47+...+1
= \(\frac{\left(50+1\right).50}{2}=\frac{51.50}{2}=1275\)
há há.. bài này mà lớp 8 hã?
\(50^2+48^2+...+4^2+2^2-49^2-47^2-...-1^2\)
\(=50^2-49^2+48^2-47^2+...+2^2-1^2\)
\(=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...\left(2+1\right)\left(2-1\right)\)
\(=99+95+...+3\)
\(=\frac{\left(99+3\right)\left(99-3\right):4+1}{2}\)
\(=1275\)
a) \(A=\frac{97^3+83^3}{180}-97\cdot83\)
\(A=\frac{\left(97+83\right)\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(A=\frac{180\cdot\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(A=97^2-97\cdot83+83^2-97\cdot83\)
\(A=9409-2\cdot8051+6889\)
\(A=196\)
b) \(B=\left(50^2+48^2+...+2^2\right)-\left(49^2+47^2+...+1^2\right)\)
\(B=50^2+48^2+...+2^2-49^2-47^2-...-1^2\)
\(B=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
\(B=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...+\left(2+1\right)\left(2-1\right)\)
\(B=50+49+48+47+...+2+1\)
Số số hạng là : \(\left(50-1\right):1+1=50\)( số )
Tổng B là : \(\left(50+1\right)\cdot50:2=1275\)
Vậy....
(50-1):1+1=50 số
=(50-49)+(48-47)+...+(4-3)+(2-1). Ta có 25 cặp số
=1+1+1+....+1
=1.25
=25
a.so so hang cua tong do la (49-1)/2+1=25
tong cac so hang do la (49+1)*25/2=625
b. lam tuong tu nhu cau a nha ban
a) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}+\left|\sqrt{2}-2\right|\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{2}-2\right)\)
\(=\left|\sqrt{2}+1\right|-\sqrt{2}+2\)
\(=\sqrt{2}+1-\sqrt{2}+2\)
\(=3\)
b) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
\(=\dfrac{1}{5}\cdot5\sqrt{2}-2\cdot4\sqrt{6}-\sqrt{\dfrac{30}{15}}+\sqrt{\dfrac{144}{6}}\)
\(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}\)
\(=-8\sqrt{6}+2\sqrt{6}\)
\(=-6\sqrt{6}\)
c) \(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
\(=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}-2\right]\left[\dfrac{4\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+4\right]\)
\(=\left(\sqrt{5}-1-2\right)\left(\dfrac{4\left(1-\sqrt{5}\right)}{1-5}+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}-1+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)\)
\(=\left(\sqrt{5}\right)^2-3^2\)
\(=-4\)
a) \(\sqrt[]{3+2\sqrt[]{2}}+\sqrt[]{\left(\sqrt[]{2}-2\right)^2}\)
\(=\sqrt[]{2+2\sqrt[]{2}.1+1}+\left|\sqrt[]{2}-2\right|\)
\(=\sqrt[]{\left(\sqrt[]{2}+1\right)^2}+\left(2-\sqrt[]{2}\right)\) \(\left(\left(\sqrt[]{2}\right)^2=2< 2^2=4\right)\)
\(=\left|\sqrt[]{2}+1\right|+2-\sqrt[]{2}\)
\(=\sqrt[]{2}+1+2-\sqrt[]{2}\)
\(=3\)
=(100+99)(100-99)+(98+97)(98-97)+....+(2+1)(2-1)
=199+195+....+3
dãy số trên có số số hạng là :
(199-3):4+1=50 (số hạng)
tổng dãy số trên là :
(199+3)50/2=5050
vậy 100^2-99^2+98^2-97^2+...+2^2-1^2=5050
\(A=\left(50^2+48^2+46^2+...+4^2+2^2\right)-\left(49^2+47^2+45^2+...+3^2+1^2\right)\)
\(A=\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+...+\left(4^2-3^2\right)+\left(2^2-1^2\right)\)
\(A=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+\left(46-45\right)\left(46+45\right)+...+\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
\(A=99+95+91+...+7+3\)
\(A=3+7+...+91+95+99\)
...............................................................................