Với n \(\in\) N* , hãy chứng tỏ phân số \(\dfrac{3n-1}{6n-1}\) tối giản.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)
\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau
Hay P tối giản
Gọi d=ƯCLN(3n+1;4n+1)
\(\Rightarrow\)3n+1 \(⋮\)d và 4n+1\(⋮\)d
\(\Rightarrow\)(3n+1).4\(⋮\)d và (4n+1).3\(⋮\)d
hay 12n+4\(⋮\)d và 12n+3 \(⋮\)d
\(\Rightarrow\)\([\)(12n+4)-(12n+3)\(]\)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)1=d
Vậy \(\frac{3n+1}{4n+1}\)là phân số tối giản.
Phần còn lại làm tương tự nha bạn.
phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d
Chúc bạn học tốt !!!
a/ Gọi d là ƯCLN của n+7; n+6
\(\to \begin{cases}n+7\vdots d\\n+6\vdots d\end{cases}\\\to n+7-(n+6)\vdots d\\\to 1\vdots d\\\to d=1\)
\(\to\) Phân số trên tối giản
b/ Gọi d là ƯCLN của 3n+2 và n+1
\(\to\begin{cases}3n+2\vdots d\\n+1\vdots d\end{cases}\\\to \begin{cases}3n+2\vdots d\\3n+3\vdots d\end{cases}\\\to 3n+3-(3n+2)\vdots d\\\to 1\vdots d\\\to d=1\)
\(\to\) Phân số trên tối giản
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
2:
a: Gọi d=ƯCLN(4n+7;2n+3)
=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>d=1
=>ƯCLN(4n+7;2n+3)=1
b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)
=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)
=>\(1⋮d\)
=>d=1
=>Đây là phân số tối giản
a) Đặt \(d=\left(n+3,2n+7\right)\).
Suy ra
\(\hept{\begin{cases}n+3⋮d\\2n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+7⋮d\end{cases}}\Rightarrow\left(2n+7\right)-2\left(n+3\right)=1⋮d\)
\(\Rightarrow d=1\).
Do đó ta có đpcm.
b) Tương tự ý a).
Do \(4n+1\) và \(6n+1\) đều là các số lẻ nên chúng chỉ có thể có các ước lẻ
Gọi \(d=ƯC\left(4n+1;6n+1\right)\Rightarrow d\) lẻ
\(\left\{{}\begin{matrix}4n+1⋮d\\6n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow6\left(4n+1\right)-4\left(6n+1\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=2\\d=1\end{matrix}\right.\)
Mà d lẻ \(\Rightarrow d=1\)
\(\Rightarrow4n+1\) và \(6n+1\) nguyên tố cùng nhau
\(\Rightarrow\dfrac{4n+1}{6n+1}\) tối giản
Gọi \(d=ƯCLN\left(3n-1;6n-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n-1⋮d\\6n-1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6n-2⋮d\\6n-1⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(3n-1;6n-1\right)=1\)
\(\Leftrightarrow\dfrac{3n-1}{6n-1}\) tối giản
Gọi d là ƯCLN của 3n-1 và 6n-1
=> d⋮3n-1 và d⋮6n-1
Do 3n-1⋮d=>6n-2⋮d
=> (6n-1)-(6n-2)=1=>1⋮d
Vậy 3n-1/6n-1 là phân số tối giản(đpcm)