hãy mô tả thuật toán để tinh tổng sau
A=\(\dfrac{1}{1.3}\)+\(\dfrac{1}{2.4}\)+\(\dfrac{1}{3.5}\)+...+\(\dfrac{1}{n\left(n+2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thuật toán:
Bước 1: Nhập n
Bước 2: i←1; a←0;
Bước 3: a←a+1/(i*(i+2));
Bước 4: i←i+1;
Bước 5: Nếu i<=n thì quay lại bước 3
Bước 6: xuất a
Bước 7: Kết thúc
Viết chương trình:
uses crt;
var a:real;
i,n:longint;
begin
clrscr;
write('Nhap n='); readln(n);
a:=0;
for i:=1 to n do
a:=a+1/(i*(i+2));
writeln(a:4:2);
readln;
end.
var n,i:longint;
a:real;
begin
write('n=');readln(n);
a:=0;
for i:=1 to n do
a:=a+1/(i*(i+2));
writeln(' Tong la: ',a);
readln;
end.
B1:Nhập n từ bàn phím;
B2:i:=1;s:=0;
B3:s:=s+1/i(i+2);i:=i+1;
B4:Nếu i<=n thì quay lại b3,ngược lại thông báo kết quả và kết thúc thuật toán.
\(\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right).\left(1+\dfrac{1}{3.5}\right).........\left[1+\dfrac{1}{x.\left(x+2\right)}\right]=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}........\dfrac{\left(x+1\right)^2}{x.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left[2.3.4.............\left(x+1\right)\right].\left[2.3.4.............\left(x+1\right)\right]}{\left(1.2.3...................x\right).\left(3.4.5..........................\left(x+2\right)\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left(x+1\right).2}{1.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow16.2\left(x+1\right)=31.\left(x+2\right)\)
\(\Rightarrow32x+32=31x+62\)
\(\Rightarrow x=30\)
Vậy x=30
Chúc bn học tốt
Ta có \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2-1+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).
Từ đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\); \(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\); \(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\); \(1+\dfrac{1}{4.6}=\dfrac{5^2}{4.6}\);...; \(1+\dfrac{1}{2022.2024}=\dfrac{2023^2}{2022.2024}\).
Suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{2022.2024}\right)\)
\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}...\dfrac{2023^2}{2022.2024}\)
\(=\dfrac{2.2023}{2024}\) \(=\dfrac{2023}{1012}\)
\(A=\dfrac{1}{2}\left(2.\dfrac{2}{3}\right)\left(\dfrac{3}{2}.\dfrac{3}{4}\right)\left(\dfrac{4}{3}.\dfrac{4}{5}\right)....\left(\dfrac{2016}{2015}.\dfrac{2016}{2017}\right)\)
\(=\dfrac{2016}{2017}\)
Mô tả tính tổng:
-B1:A\(\leftarrow0\),i\(\leftarrow1.\)
-B2:A\(\leftarrow\dfrac{1}{i\times\left(i+2\right)}\)
-B3:\(i\leftarrow i+1\)
-B4:Nếu \(i\le n\),quay lại B2
-B5:Ghi kết quảA và kết thúc thuật toán.
Giải thuật tính tổng trên là :
- Bước 1:Nhập số n
- Bước 2:S<-0; i<-0;
- Bước 3:i<-i+1;
- Bước 4:Nếu i <= n thì S:=S+1/(i*(i+2)) nghĩa là công vào S = S+1/(i*(i+2)) và quay lại
- Bước 5.Ngược lại thông báo kết quả và kết thúc thuật toán.