Cho hình thang cân ABCD với AB//CD. Gọi I là giao
điểm của AC, BD.
(a) Chứng minh rằng các tam giác IAB, ICD cân tại I.
(b) Gọi M, N là trung điểm của AB, CD. Chứng minh
rằng M, I, N thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: OC+OA=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Xét ΔADC và ΔBCD có
CD chung
AD=BC(ABCD là hình thang cân)
AC=BD(ABCD là hình thang cân)
Do đó: ΔADC=ΔBCD(c-c-c)
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)(hai góc tương ứng)
hay \(\widehat{IDC}=\widehat{ICD}\)
Xét ΔIDC có \(\widehat{IDC}=\widehat{ICD}\)(cmt)
nên ΔIDC cân tại I(Định lí đảo của tam giác cân)
Ta có: \(\widehat{IAB}=\widehat{ICD}\)(hai góc so le trong, AB//CD)
\(\widehat{IBA}=\widehat{IDC}\)(hai góc so le trong, AB//CD)
mà \(\widehat{ICD}=\widehat{IDC}\)(cmt)
nên \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)
nên ΔIAB cân tại I(Định lí đảo của tam giác cân)
1]
a]
Ta có:
AI/IM = AB/DM
BK/KM = AB/MC
Do DM =MC
=> AI/IM = BK/KM
=> IK//AB
b]
IE/DM = AI/AM
KF/MC = BK/BM
Mà AI/AM = BK/BM (do IK//AB)
=> IE/DM = KF/MC mà DM=MC
=> IE = KF
2]
a}
Ta có:
AE/EK = AB/DK
BF/FI = AB/CI
Do ABID và ABCK là h..b.hành
=> CK=DI =AB
=> DK = CI = CD -AB
=> AE/EK = NF/FI
=> EF//AB
b}
Ta có EF/CK =AF/AC = AB/CD
=> EF.CD = CK.AB = AB^2 (do CK =AB)
3]
a}
Ta có:
MB/MF = MC/MA (Xét BC//AF)
ME/MB = MC/MA (Xét CE//AB)
=> MB/MF = ME/MB
=> MB^2 = ME.MF
b}
BM/MF = MC/AC (Xét BC//AF)
BM/ME = AM/AC (Xét CE//AB)
=> BM/MF + BM/ME = MC/AC + AM/AC =1
=> BM/MF + BM/ME =1
=> 1/BF+1/BE=1/BM
a) Xét ΔACD và ΔBDC có
AC=BD
AD=BC
DC chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{IDC}=\widehat{ICD}\)
Xét ΔIDC có \(\widehat{IDC}=\widehat{ICD}\)
nên ΔIDC cân tại I
Suy ra: ID=IC
Ta có: AI+IC=AC
BI+DI=BD
mà AC=BD
và ID=IC
nên IA=IB