K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

ta có AD+DC=AC

=>7+1=A

=>AC=8 CM

mà AB=AC( TAM GIÁC ABC CÂN TẠI A)

MẶT KHÁC AC=8 cm=>AB=8CM

ap dụng định lý py-ta-go cho tam giác ADB vuông tại D

=>AD^2+BD^2=AB^2

=>7^2+BD^2=8^2

=>BD^15

=> BD= CĂN 15(BD>0)

ÁP DỤNG ĐỊNH LÝ PY TA GO CHO TAM GIÁC BDC VUÔNG TẠI D

BD^2+DC^2+BC^2

=>CĂN 15^2+1^2=BC^2

=>15+1=BC^2

=>16=BC^2

=>BC=4(BC>0)
=>

6 tháng 2 2018

a) xét tam giác AEC và tam giác ADB

góc ADB=góc AEC(=90 độ)

AB=AC ( Tam giác abc cân tại A)

góc A chung

Do đó tam giác AEC= tam giác ADB

b) Xét tam giác AEI và tam giác ADI có

góc AEI=ADI(=90 độ)

AD=AE(câu a)

AI chung

Do đó tam giác AEI = tam giác ADI

=> góc EAI=DAI (hai góc tương ứng)(1)

mà AI nằm giữa hai tia AB và AC(2)

Từ (1) và(2) AI là phân giác của hóc A

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

=>BE=DC

=>AE=AD

b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

=>ΔAEI=ΔADI

=>góc EAI=góc DAI

=>AI là phân giác của góc BAC

c: ΔABC cân tại A

mà AM là trung tuyến

nên AM là phân giác của góc BAC

=>A,I,M thẳng hàng

`a,`

Vì `\Delta ABC` cân tại A

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `2\Delta` vuông và `BEC` và `CDB`:

`\text {BC chung}`

$\widehat {B} = \widehat {C}$

`=> \Delta BEC = \Delta CDB (ch-gn)`

`-> \text {BE = CD (2 cạnh tương ứng)}`

`b,`

Ta có: \(\left\{{}\begin{matrix}\text{AB = AE + BE}\\\text{AC = AD + CD}\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BE = CD}\end{matrix}\right.\)

`-> \text {AE = AD}`

Xét `2\Delta` vuông `AEI` và ` ADI`:

`\text {AE = AD}`

`\text {AI chung}`

`=> \Delta AEI = \Delta ADI (ch-cgv)`

`->` $\widehat {EAI} = \widehat {DAI} (\text {2 góc tương ứng})$

`-> \text {AI là tia phân giác của}` $\widehat {EAD}$

Mà \(\text{E}\in\text{AB, D}\in\text{AC}\)

`-> \text {AI là tia phân giác của}` $\widehat {BAC}$ `(1)`

`c,`

Vì M là trung điểm của AC

`-> \text {AM là đường trung tuyến của} \Delta ABC` `(2)`

Từ `(1)` và `(2)`

`-> \text {Ba điểm A, I, M thẳng hàng.}`

loading...

26 tháng 1 2016

Trang chelsea chht là sao

26 tháng 1 2016

xin lỗi em mới học lớp 6

24 tháng 4 2017

B A C D E H

Trước khi làm mình có lưu ý là mình sử dụng H luôn cho câu b nhé, dù ở câu c mới xuất hiện.

a/ Xét \(\Delta ABD\)vuông tại \(D\)có:

\(AD^2+BD^2=AB^2\left(pytago\right)\)

\(AD^2+8^2=10^2\)

\(AD^2=10^2-8^2=100-64=36\)

\(\Rightarrow AD=\sqrt{36}=6\left(cm\right)\)

b/ Xét tam giác ABC có 2 đường cao BD;CE cắt nhau tại H => H là trực tâm tam giác ABC

=> AH là đường cao thứ 3 (Vậy thôi đủ xài)

=> AH cũng là đường phân giác vì tam giác ABC cân tại A

Xét \(\Delta AEH\)và \(\Delta ADH\)có:

\(\hept{\begin{cases}AH:chung\\\widehat{EAH}=\widehat{DAH}\left(cmt\right)\\\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)

\(\Rightarrow AE=AD\)

Xét \(\Delta AEC\)và \(\Delta ABD\)có:

\(\hept{\begin{cases}AE=AD\left(cmt\right)\\\widehat{AEC}=\widehat{ADB}=90^0\left(gt\right)\\\widehat{BAC}:chung\end{cases}}\)

\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)

\(\Rightarrow CE=BD\)

c/ (đã chứng minh câu b)

d/ Vì tam giác AEC = tam giác ADB 

=> \(\widehat{ACE}=\widehat{ABD}\)

Mà: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{DBC}=\widehat{ECB}\)

\(\Rightarrow\Delta BHC\)cân tại \(H\)

e/ Xét \(\Delta AHD\)vuông tại \(H\)có:

\(AD^2+HD^2=AH^2\left(pytago\right)\)

\(6^2+5^2=AH^2\)(vì 36 + 25 = 61)

\(\Rightarrow AH=\sqrt{61}\approx7,8\left(cm\right)\)

29 tháng 12 2020

undefined

a) Xét \(\Delta ABD\)\(\Delta ACE\) có:

\(\widehat{ADB}=\widehat{AEC}=90^0\) (gt)

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABD=\widehat{ACE}\) (cạnh huyền - góc nhọn)

\(\Rightarrow AD=AE\) (hai cạnh tương ứng)

b) Xét \(\Delta AEI\)\(\Delta ADI\) có:

\(AI\) là cạnh chung

AE = AD (cmt)

\(\widehat{AEI}=\widehat{ADI}=90^0\)

\(\Rightarrow\Delta AEI=\Delta ADI\) (cạnh huyền - góc nhọn)

\(\Rightarrow\widehat{EAI}=\widehat{DAI}\) (hai góc tương ứng)

\(\Rightarrow\) \(AI\) là tia phân giác của \(\widehat{DAE}\)

Hay \(AI\) là tia phân giác của \(\widehat{BAC}\)

bạn ơi bạn có nhầm đề không sao góc A < 900??? Bạn xem lại đề nhé

13 tháng 3 2020

Ý bạn ấy nói là A nhỏ hơn 90 độ ý câu !!!

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

AD=AE

=>ΔADI=ΔAEI

=>góc DAI=góc EAI

=>AI là phân giác của góc DAE

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

26 tháng 1 2022

Mình cảm ơn cậu nhé