ΔABC có 3 đường cao lần lượt là 60 ; 65 ; 156 . Tính diện tích Δ ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi giao điểm của AB và EH là O
Xét tg AEO có \(\sin\widehat{A}=\dfrac{OE}{OA}\)
Vì \(\left\{{}\begin{matrix}\widehat{OEA}=\widehat{HDO}=90^0\\\widehat{AOE}.chung\end{matrix}\right.\) nên \(\Delta ODH\sim\Delta OEA\left(g.g\right)\)
\(\Rightarrow\dfrac{OD}{OE}=\dfrac{OH}{OA}\)
Vì \(\left\{{}\begin{matrix}\dfrac{OD}{OE}=\dfrac{OH}{OA}\\\widehat{AOE}.chung\end{matrix}\right.\) nên \(\Delta OHA\sim\Delta ODE\left(c.g.c\right)\)
\(\Rightarrow\dfrac{DE}{AH}=\dfrac{OE}{OA}=\sin\widehat{A}\\ \Rightarrow DE=AH\cdot\sin\widehat{A}\)
b, Áp dụng công thức diện tích tam giác bằng \(\dfrac{1}{2}\) tích hai cạnh kề với sin của góc hợp bởi hai cạnh đó trong tam giác.
\(S_{ABC}=S_{AIB}+S_{AIC}\\ \Rightarrow\dfrac{1}{2}\cdot AB\cdot AC\cdot\sin\widehat{BAC}=\dfrac{1}{2}\cdot AB\cdot AI\cdot\sin\widehat{BAI}+\dfrac{1}{2}AC\cdot AI\cdot\sin\widehat{CAI}\)
Mà AI là p/g nên \(\widehat{BAI}=\widehat{CAI}=\dfrac{1}{2}\widehat{BAC}=30^0\)
\(\Rightarrow\dfrac{1}{2}AB\cdot AC\cdot\sin60^0=\dfrac{1}{2}AB\cdot AI\cdot\sin30^0+\dfrac{1}{2}AC\cdot AI\cdot\sin30^0\\ \Rightarrow\dfrac{\sqrt{3}}{4}\cdot AB\cdot AC=\dfrac{1}{4}AB\cdot AI+\dfrac{1}{4}AC\cdot AI\\ \Rightarrow\dfrac{\sqrt{3}}{4}\cdot AB\cdot AC=\dfrac{1}{4}AI\left(AB+AC\right)\\ \Rightarrow\dfrac{\dfrac{\sqrt{3}}{4}}{\dfrac{1}{4}AI}=\dfrac{AB+AC}{AB\cdot AC}\\ \Rightarrow\dfrac{\sqrt{3}}{AI}=\dfrac{1}{AB}+\dfrac{1}{AC}\left(đpcm\right)\)
a, Xét tam giác ABD và tam giác ACE
^A _ chung
^ADB = ^AEC = 900
Vậy tam giác ABD ~ tam giác ACE (g.g)
b, Xét tam giác CBD và tam giác CAK ta có
^C _ chung
^CDB = ^CKA = 900
Vậy tam giác CDB ~ tam giác CKA (g.g)
\(\dfrac{CD}{CK}=\dfrac{CB}{CA}\Rightarrow CD.CA=CB.CK\)
c, Xét tam giác KDC và tam giác ABC
^C _ chung
\(\dfrac{DC}{BC}=\dfrac{KC}{AC}\)( tỉ lệ thức tỉ số đồng dạng )
Vậy tam giác KDC ~ tam giác ABC (c.g.c)
a: \(\widehat{C}=30^0\)
AB=4cm
\(AC=4\sqrt{3}\left(cm\right)\)
Hình như đề bài sai bạn ơi câu a phải là \(\dfrac{HC}{HB}\)= \(\dfrac{MA}{AH}\)
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Xét ΔBHD vuông tại H và ΔCKD vuông tại K có
BD=CD
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBHD=ΔCKD
c: ta có: AH+HB=AB
AK+KC=AC
mà AB=AC
và HB=KC
nên AH=AK
hay ΔAKH cân tại A
d: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
a: Xét ΔADB và ΔADC có
AD chung
DB=DC
AB=AC
Do đó: ΔADB=ΔADC
b: Xét ΔBHD vuông tại H và ΔCKD vuông tại K có
BD=CD
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBHD=ΔCKD
c: Ta có: AH+HB=AB
AK+KC=AC
mà HB=KC
và AB=AC
nên AH=AK
hay ΔAHK cân tại A
d: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
a: Xét ΔADB và ΔADC có
AD chung
DB=DC
AB=AC
Do đó: ΔADB=ΔADC
b: Xét ΔBHD vuông tại H và ΔCKD vuông tại K có
BD=CD
ˆB=ˆCB^=C^
Do đó: ΔBHD=ΔCKD
c: Ta có: AH+HB=AB
AK+KC=AC
mà HB=KC
và AB=AC
nên AH=AK
hay ΔAHK cân tại A
d: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
\(\widehat{BHD}=\widehat{HAB}\)
\(\widehat{HAB}=\widehat{ADE}\)
Do đó: \(\widehat{ADE}=\widehat{BHD}\)