K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

 LÀM ĐƯỢC MÌNH KẾT BẠN VÀ K CHO NHA

22 tháng 1 2018

mk xin lỗi vì chỉ mới lp 4 tui

14 tháng 12 2020

1/

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2

+ Nếu \(n⋮3\) Bài toán đã được c/m

+ Nếu n chia 3 dư 1 => \(n+2⋮3\)

+ Nếu n chia 3 dư 2 => \(n+1⋮3\)

Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3

2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau

\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)

\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)

\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4

3/

a/ Gọi 3 số TN liên tiếp là n; n+1; n+2

\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)

b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3

\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)

Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4

26 tháng 9 2016

1. a chia cho 12 dư 8

=>a=12.k+8

=> a chia hết cho 4(vì cả 2 12.k và 8 đều chia hết cho 4)

a không  chia hết cho 6 vì số 12.k chia hết cho 6 và 8 không chia hết cho 6.

26 tháng 9 2016

bít lm lâu ồibanhqua

9 tháng 8 2018

1)  Gọi thương của a khi chia cho 24 là: x

Ta có:\(a=24x+10=2\left(12x+5\right)\)\(⋮\)\(2\)

=> a chi hết cho 2

          \(a=24x+10\)

Nhận thấy:   \(24x\)\(⋮\)\(4\)nhưng   \(10\)không chia hết cho \(4\)

=> a không chia hết cho \(4\)

2)

a)  Gọi 2 số tự nhiên liên tiếp là: \(a;\)\(a+1\)

nếu: \(a=2k\)thì \(a⋮2\)

nếu:  \(a=2k+1\)thì:  \(a+1=2k+1+1=2k+2\)\(⋮\)\(2\)

Vậy trong 2 số tự nhiên liên tiếp luôn tồn tại 1 số chhia hết cho 2

b) ktra lại đề

31 tháng 12 2018

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 

11 tháng 3 2016

Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư 
Nên hiệu của chúng chia hết cho 13 
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13 
Ta có: abcdeg + (abc-deg) 
= abcdeg + abc-deg 
= 1000.abc + deg + abc - deg 
= (1000+1).abc + (deg-deg) 
= 1001.abc + 0 
= 1001.abc 
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13 
=> abcdeg + (abc-deg) chia hết cho 13 
Mà abc-deg chia hết cho 13 
Nên abcdeg chia hết cho 13 
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13

chuc ban hoc tot nha -_-