K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

\(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{90}\)

\(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(S=\dfrac{1}{1}-\dfrac{1}{10}\)

\(S=\dfrac{10}{10}-\dfrac{1}{10}\)

\(S=\dfrac{9}{10}\)

27 tháng 3 2022

dễ mà 

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{10}{10}-\dfrac{1}{10}=\dfrac{9}{10}\)

 

31 tháng 12 2022

Có công thức \(\dfrac{x}{a\left(a+x\right)}=\dfrac{1}{a}-\dfrac{1}{a+x}\) nhé!

Ví dụ: \(\dfrac{2}{2.4}=\dfrac{1}{2}-\dfrac{1}{4}\)

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)

\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)

Dấu . tức là nhân nhé!

10 tháng 7 2023

\(\dfrac{1}{3}-\dfrac{1}{12}-\dfrac{1}{20}-\dfrac{1}{30}-\dfrac{1}{42}-\dfrac{1}{56}-\dfrac{1}{72}-\dfrac{1}{90}-\dfrac{1}{110}=x-\dfrac{5}{13}\)

\(\dfrac{1}{3}\) - \(\dfrac{1}{3.4}\) - \(\dfrac{1}{4.5}\) - \(\dfrac{1}{5.6}\) - \(\dfrac{1}{6.7}\) - \(\dfrac{1}{7.8}\)\(\dfrac{1}{8.9}\) - \(\dfrac{1}{9.10}\) - \(\dfrac{1}{10.11}\) = \(x\) - \(\dfrac{5}{13}\)

\(\dfrac{1}{3}\) - (\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)\(\dfrac{1}{7.8}\) + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\) + \(\dfrac{1}{10.11}\) =\(x\)-\(\dfrac{5}{13}\)

\(\dfrac{1}{3}\)  - (\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +...+ \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{11}\)) = \(x\) - \(\dfrac{5}{13}\)

 \(\dfrac{1}{3}\) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{11}\)) =  \(x\) - \(\dfrac{5}{13}\)

\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\) +  \(\dfrac{1}{11}\) =  \(x\) - \(\dfrac{5}{13}\)

         \(x-\dfrac{5}{13}=\dfrac{1}{11}\)

        \(x\)           = \(\dfrac{1}{11}\) + \(\dfrac{5}{13}\)

      \(x\)           = \(\dfrac{68}{143}\)

10 tháng 7 2023

Em cảm ơn ạ.

27 tháng 5 2022

`[-1]/2+[-1]/6+[-1]/12+[-1]/20+[-1]/30+[-1]/42+[-1]/56+[-1]/72+[-1]/90`

`=(-1)(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)`

`=(-1)(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)`

`=(-1)(1-1/10)`

`=(-1). 9/10=-9/10`

27 tháng 5 2022

A = \(\dfrac{-1}{2}\) + \(\dfrac{-1}{6}\)\(\dfrac{-1}{12}\)\(\dfrac{-1}{20}\)\(\dfrac{-1}{30}\)\(\dfrac{-1}{42}\)\(\dfrac{-1}{56}\)\(\dfrac{-1}{72}\)\(\dfrac{-1}{90}\)

A = \(\dfrac{-1}{2}\) + \(\dfrac{-1}{2\times3}\)\(\dfrac{-1}{3\times4}\)\(\dfrac{-1}{4\times5}\)\(\dfrac{-1}{5\times6}\)\(\dfrac{-1}{6\times7}\)\(\dfrac{-1}{7\times8}\)\(\dfrac{-1}{8\times9}\)+ + \(\dfrac{-1}{9\times10}\)

A = - (\(\dfrac{1}{2}\)\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)\(\dfrac{1}{4}\)\(\dfrac{1}{5}\)\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)\(\dfrac{1}{9}\)-\(\dfrac{1}{10}\))

A = -(1-\(\dfrac{1}{10}\))

A = \(\dfrac{-9}{10}\)

sau đây là phần chữa của mình: 

\(=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

 \(=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{10}\)

\(\dfrac{3}{10}\)

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\dfrac{1}{2}-\dfrac{1}{10}\)

\(\dfrac{2}{5}\)

(y - \(\dfrac{1}{2}\)) : \(\left(\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\right)\)\(\dfrac{1}{3}\)

(y\(-\dfrac{1}{2}\)): \(\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)\(\dfrac{1}{3}\)

\(\left(y-\dfrac{1}{2}\right):\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{10}\right)=\dfrac{1}{3}\)

\(\left(y-\dfrac{1}{2}\right):\dfrac{3}{10}=\dfrac{1}{3}\)

\(\left(y-\dfrac{1}{2}\right)=\dfrac{1}{10}\)

y = \(\dfrac{3}{5}\)

=9/10-(1/2+1/6+...+1/90)

=9/10-(1-1/2+1/2-1/3+...+1/9-1/10)

=9/10-9/10=0