Cho đường tròn (O) đường kính AB. Trên đoạn thẳng OB lấy điểm H bất kì ( H không trùng O, B) ; trên đường thẳng vuông góc với OB tại H, lấy một điểm M ở ngoài đường tròn ; MA và MB thứ tự cắt đường tròn (O) tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh MCID, MCHB là tứ giác nội tiếp .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì `hat{ACB},hat{ADB}` là 2 góc chẵn nửa (O)
`=>hat{ACB}=hat{ADB}=90^o`
`=>hat{ICM}=hat{IDM}=90^o`
`=>hat{ICM}+hat{IDM}=180^o`
`=>` tg CIDM nt
Vì `MH bot AB`
`=>hat{MHB}=90^o`
`=>hat{MCB}=hat{MHB}=90^o`
`=>` tg CHBD nt (2 đỉnh kề nhau dưới 1 góc không đổi)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì tổng các góc trong tứ giác bằng \(360^0\) mà \(\widehat{CBE}+\widehat{EFC}=180^0\) nên suy ra \(\widehat{BCF}+\widehat{BEF}=180^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo
https://asknlearn247.com/question/cho-duong-tron-o-r-duong-kinh-ab-co-dinh-tren-tia-doi-cua-tia-ab-lay-diem-c-sao-cho-ac-r-qua-c-k-2018212/
a, Xét (O), đường kính AB có: M ∈ (O)
⇒ ˆAMB=90°AMB^=90° (góc nội tiếp chắn nửa đường tròn)
⇒ AM ⊥ BP ⇒ ˆAMP=90°AMP^=90°
PC ⊥ AC (gt) ⇒ ˆACP=90°ACP^=90° Hay ˆBCP=90°BCP^=90°
Xét tứ giác ACPM có: ˆAMP+ˆACP=90°+90°=180°AMP^+ACP^=90°+90°=180°
Mà hai góc này ở vị trí đối nhau
⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP
b, Xét ΔBMA và ΔBCP có:
ˆBMA=ˆBCP=90°BMA^=BCP^=90°
ˆPBCPBC^: góc chung
⇒ ΔBMA ~ ΔBCP (g.g)
⇒ BMBC=BABPBMBC=BABP (các cặp cạnh tương ứng tỉ lệ)
⇒ BM.BP = BA.BC
Có BC=BA+CA=2R+R=3R
⇒ BM.BP=BA.BC=2R.3R=6R²
c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)
⇒ ˆCPA=ˆCMACPA^=CMA^ (góc nội tiếp chắn CACA⏜)
Hay ˆCPQ=ˆCMACPQ^=CMA^
Xét (O) có: A, M, N, Q ∈ (O)
⇒ Tứ giác AMNQ nội tiếp (O)
⇒ ˆAQN+ˆAMN=180°AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)
Mà ˆAMC+ˆAMN=180°AMC^+AMN^=180° (hai góc kề bù)
⇒ ˆAQN=ˆCMAAQN^=CMA^ Hay ˆPQN=ˆCMAPQN^=CMA^
Mà ˆCPQ=ˆCMACPQ^=CMA^ (cmt)
⇒ ˆCPQ=ˆPQNCPQ^=PQN^
Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ
⇒ CP // NQ
d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I
Mà BC cố định ⇒ D cố định
Có O, D cố định ⇒ I cố định
Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)
⇒ DGDM=13DGDM=13
Xét ΔOMD có: GI // MO (cách vẽ)
⇒ DGDM=GIMODGDM=GIMO (hệ quả định lí Talet)
⇒ GIMO=13⇒GI=MO3=R3GIMO=13⇒GI=MO3=R3
Mà R không đổi
⇒ G luôn cách I một khoảng bằng R3R3
⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính R3R3
![](https://rs.olm.vn/images/avt/0.png?1311)
Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đo: ΔADB vuông tại D
Xét tứ giác MCID có \(\widehat{MCI}+\widehat{MDI}=180^0\)
nên MCID là tứ giác nội tiếp
Xét tứ giác MCHB có \(\widehat{MCB}=\widehat{MHB}=90^0\)
nên MCHB là tứ giác nội tiếp