Cho tam giác ABC có Â=60 độ. Chứng minh rằng BC^2=AB^2+AC^2-AB.BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ CH\(\perp\)AB (H\(\in\)AB)
\(\Delta\)BCH vuông tại H có ^B = 600 nên BH = 1/2BC (cạnh đối diện với góc 300 trong tam giác vuông bằng nửa cạnh huyền) hay BC = 2BH
Áp dụng định lý Py-ta-go vào các tam giác AHC và HBC cùng vuông tại H, ta được: AC2 = AH2 + HC2 = (AB - HB)2 + HC2 = AB2 - 2.AB.HB + HB2 + HC2 = AB2 - AB.BC + BC2 (do theo chứng minh trên thì BC = 2BH)
Vậy AC2 = AB2 + BC2 - AB.BC (đpcm)
Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(BA^2+BC^2-AC^2=2\cdot BA\cdot BC\cdot cos60=BA\cdot BC\)
=>AC^2=BA^2+BC^2-BA*BC
mình thít toán nhưng hong đồng ngĩa là mình giỏi toán
https://lazi.vn/edu/exercise/cho-tam-giac-abcab-ac-goc-a-90-do-bh-ac-chung-minh-ac2-ab2-bc2-3bh2-2ah2-ch2