Giải hệ phương trình:
\(\left\{{}\begin{matrix}\sqrt{3x}\left(1+\dfrac{1}{x+y}\right)=2\\\sqrt{7y}\left(1-\dfrac{1}{x+y}\right)=4\sqrt{2}\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)
ĐKXĐ: \(x;y\ge0\)
Với \(x=0\) hoặc \(y=0\) đều ko là nghiệm
Với \(x;y>0\) hệ tương đương:
\(\left\{{}\begin{matrix}1+\dfrac{1}{x+y}=\dfrac{2}{\sqrt{3x}}\\1-\dfrac{1}{x+y}=\dfrac{4\sqrt{2}}{\sqrt{7y}}\end{matrix}\right.\)
Lần lượt cộng vế với vế và trừ vế cho vế ta được:
\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{3x}}+\dfrac{2\sqrt{2}}{\sqrt{7y}}\\\dfrac{1}{x+y}=\dfrac{1}{\sqrt{3x}}-\dfrac{2\sqrt{2}}{\sqrt{7y}}\end{matrix}\right.\)
Nhân vế với vế:
\(\dfrac{1}{x+y}=\dfrac{1}{3x}-\dfrac{8}{7y}\)
\(\Leftrightarrow\dfrac{y}{3}-\dfrac{8x}{7}=1\)
\(\Rightarrow y=\dfrac{24x+21}{7}\)
Rồi thế vào 1 trong các pt đầu
Nhưng em có nhầm đề ko mà con số xấu kinh khủng vậy nhỉ? Số \(\sqrt{7}\) kia cho xấu 1 cách ko cần thiết, nó ko ảnh hưởng đến cách giải mà chỉ khiến cho việc tính toán khó khăn 1 cách cơ học khá vớ vẩn
a) Ta có: \(\left\{{}\begin{matrix}\sqrt{2}x-y=3\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}x-y=3\\\sqrt{2}x+2y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=1\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}\cdot\dfrac{-1}{3}=\dfrac{4\sqrt{2}}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4\sqrt{2}}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\dfrac{x}{2}-2y=\dfrac{3}{4}\\2x+\dfrac{y}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-8y=3\\2x+\dfrac{1}{3}y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{25}{3}y=\dfrac{10}{3}\\2x-8y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{5}\\2x=3+8y=3+8\cdot\dfrac{-2}{5}=-\dfrac{1}{5}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\dfrac{2x-3y}{4}-\dfrac{x+y-1}{5}=2x-y-1\\\dfrac{x+y-1}{3}+\dfrac{4x-y-2}{4}=\dfrac{2x-y-3}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5\left(2x-3y\right)}{20}-\dfrac{4\left(x+y-1\right)}{20}=\dfrac{20\left(2x-y-1\right)}{20}\\\dfrac{4\left(x+y-1\right)}{12}+\dfrac{3\left(4x-y-2\right)}{12}=\dfrac{2\left(2x-y-3\right)}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y-4x-4y+4=40x-20y-20\\4x+4y-4+12x-3y-6=4x-2y-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-19y+4-40x+20y+20=0\\16x+y-10-4x+2y+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-34x+y=-24\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-102x+3y=-72\\12x+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-114x=-76\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\12\cdot\dfrac{2}{3}+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\3y=4-8=-4\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}+\sqrt{x}=y+\sqrt{y}\left(1\right)\\\left|x-1\right|+\left|y-2\right|=1+x^2-y^2\left(2\right)\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\xy+\dfrac{x-y}{x^2+y^2+1}\ge0\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}-y=\sqrt{y}-\sqrt{x}\)
\(\Leftrightarrow\dfrac{y\left(x-y\right)+\dfrac{x-y}{x^2+y^2+1}}{\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}+y}=\dfrac{x-y}{-xy}\Leftrightarrow\left(x-y\right)\left[\dfrac{y+\dfrac{1}{x^2+y^2+1}}{\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}+y}+xy\right]=0\Leftrightarrow x=y\).
Thay x = y vào (2) ta có \(\left|y-1\right|+\left|y-2\right|=1\). (*)
Ta có \(\left|y-1\right|+\left|y-2\right|=\left|y-1\right|+\left|2-y\right|\ge y-1+2-y=1\).
Mà đẳng thức xảy ra ở (1) nên ta phải có \(1\le y\le2\). (TMĐK)
Vậy pt đã cho có vô số nghiệm \(x=y=k\) với \(1\le k\le2\)
Sao VP (1) bạn biến đổi từ \(\sqrt{y}-\sqrt{x}\) ra \(\dfrac{x-y}{-xy}\) được vậy?
Đặt 1/x=a; căn(y-1)=b
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\2a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=a+4=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=5\end{matrix}\right.\)
Đặt: \(\left[{}\begin{matrix}a=\dfrac{1}{x}\\b=\sqrt{y-1}\end{matrix}\right.\)
\(=>\left\{{}\begin{matrix}a-b=4\\2a-b=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2a-2b=8\\2a-b=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-b=6\\a-b=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b=-6\\a+6=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-6\\a=-2\end{matrix}\right.\) Thay: \(\left\{{}\begin{matrix}\dfrac{1}{x}=-2\\\sqrt{y-1}=-6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=37\end{matrix}\right.\)
1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)
2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)
3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)
dk bn tự xd nhé
\(\left\{{}\begin{matrix}1+\dfrac{1}{x+y}=\dfrac{2}{\sqrt{3x}}\left(1\right)\\1-\dfrac{1}{x+y}=\dfrac{4\sqrt{2}}{\sqrt{7y}}\left(2\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2=\dfrac{2}{\sqrt{3x}}+\dfrac{4\sqrt{2}}{\sqrt{7y}}\left(1\right)+\left(2\right)\\\dfrac{2}{x+y}=\dfrac{2}{\sqrt{3x}}-\dfrac{4\sqrt{2}}{\sqrt{7y}}\left(1\right)-\left(2\right)\end{matrix}\right.\)
nhân vế vs vế 2 hpt trên \(\dfrac{4}{x+y}=\left(\dfrac{2}{\sqrt{3x}}-\dfrac{4\sqrt{2}}{\sqrt{7y}}\right)\left(\dfrac{2}{\sqrt{3x}}+\dfrac{4\sqrt{2}}{\sqrt{7y}}\right)\)
\(\Leftrightarrow\dfrac{4}{x+y}=\dfrac{4}{3x}-\dfrac{32}{7y}\)
\(\Leftrightarrow\dfrac{1}{x+y}=\dfrac{1}{3x}-\dfrac{8}{7y}\)
đến đây bn giải nốt nhé