K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2018

Lời giải:

Xét 2 trường hợp sau:

TH1: \(xy\geq 0\Rightarrow |xy|=xy\)

HPT \(\Leftrightarrow \left\{\begin{matrix} 17x+2y=2011xy(1)\\ x-2y=3xy(2)\end{matrix}\right.\)

\((1)+(2)\Rightarrow 18x=2014xy\Leftrightarrow x(18-2014y)=0\)

\(\Leftrightarrow \left[\begin{matrix} x=0\\ y=\frac{9}{1007}\end{matrix}\right.\)

Nếu \(x=0\Rightarrow -2y=0\Leftrightarrow y=0\) (t/m)

Nếu \(y=\frac{9}{1007}\Rightarrow x-\frac{18}{1007}=\frac{27x}{1007}\Leftrightarrow x=\frac{9}{490}\) (t/m)

TH2: \(xy\leq 0\Rightarrow |xy|=-xy\)

HPT \(\Leftrightarrow \left\{\begin{matrix} 17x+2y=-2011xy\\ x-2y=3xy\end{matrix}\right.\)

\(\Rightarrow 18x=-2011xy+3xy=-2008xy\)

\(\Leftrightarrow x(18+2008y)=0\)

Nếu \(x=0\Rightarrow -2y=0\Rightarrow y=0\) (t/m)

Nếu \(y=-\frac{9}{1004}\Rightarrow x+\frac{18}{1004}=\frac{-27x}{1004}\Leftrightarrow x=-\frac{18}{1031}\) (không t/m)

Vậy \((x,y)=(0,0); (\frac{9}{490}, \frac{9}{1007})\)

8 tháng 7 2018

tại sao x=\(\dfrac{-18}{1031}\)ko thỏa mãn

NV
7 tháng 1

- TH1: \(xy\ge0\Rightarrow\left|xy\right|=xy\)

Hệ trở thành: \(\left\{{}\begin{matrix}17x+2y=2011xy\\x-2y=3xy\end{matrix}\right.\)

Cộng vế: \(\Rightarrow18x=2014xy\Rightarrow2x\left(1007y-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\y=\dfrac{9}{1007}\Rightarrow x=\dfrac{9}{490}\end{matrix}\right.\) (đều thỏa mãn)

TH2: \(xy< 0\Rightarrow\left|xy\right|=-xy\)

Hệ trở thành: \(\left\{{}\begin{matrix}17x+2y=-2011xy\\x-2y=3xy\end{matrix}\right.\)

Cộng vế: \(18x=-2008xy\Rightarrow2x\left(9+1004y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\left(loại\right)\\y=-\dfrac{9}{1004}\Rightarrow x=-\dfrac{18}{1031}\left(loại\right)\end{matrix}\right.\)

26 tháng 8 2016

Chỉ cần áp dụng cái giá trị tuyệt đối là rara

29 tháng 4 2023

\(\left\{{}\begin{matrix}2\left(xy+1\right)=x\left(x+y\right)+2\left(1\right)\\3xy-x+3=\sqrt{x+2y+1}+\sqrt{x+4y+4}\left(2\right)\end{matrix}\right.\)

Đk: \(x+2y+1\ge0,x+4y+4\ge0\)

\(\left(1\right)\Rightarrow2xy+2=x^2+xy+2\)

\(\Leftrightarrow x^2-xy=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=y\end{matrix}\right.\) 

*Khi \(x=0\), thay vào (2) ta được pt: \(\sqrt{2y+1}+\sqrt{4y+4}=3\)

Giải bằng phương pháp bình phương 2 vế ta được \(y=0\).

Thay \(x=y=0\) vào đk hoàn toàn thỏa mãn.

*Khi \(x=y\), thay vào (2) ta được pt: \(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\) .

Mình không giải được nhưng pt có nghiệm \(x=0\) nên suy ra \(y=0\)Vậy hệ pt ban đầu có nghiệm \(\left(x,y\right)=\left(0;0\right)\).

 

18 tháng 8 2021

các bn ơi giúp mình với

 

4 tháng 2 2017

1) Từ đề bài => (17x + 2y)+(x - 2y) = 2011|xy|+3xy

<=> 18x = 2011|xy|+3xy (1)

Dễ thấy x = y = 0 là nghiệm của (1)

Bây giờ ta xét trường hợp x và y khác 0

+ Nếu xy < 0, từ (1) => 18x = -2011xy + 3xy

<=> 18x = -2008xy

<=> y = -1004/9

Thay vào x - 2y = 3xy ta được:

x - 2.(-1004/9) = 3.(-1004/9).x

<=> x = -2008/3021 (không TM xy < 0)

+ Nếu xy > 0, từ (1) => 18x = 2011xy + 3xy

<=> 18x = 2014xy

<=> y = 1007/9

Thay vào x - 2y = 3xy ta được:

x - 2.1007/9 = 3x.1007/9

<=> x = -1007/1506 (ko TM)

Vậy ...

4 tháng 2 2017

2. DKXD: \(x\ge0;y\ge z;z\ge x\)

\(\left(1\right)\Leftrightarrow2\sqrt{x}+2\sqrt{y-z}+2\sqrt{z-x}=y+3\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-z-2\sqrt{y-z}+1\right)+\left(z-x-2\sqrt{z-x}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-z}-1\right)^2+\left(\sqrt{z-x}-1\right)^2=0\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x}-1=0\\\sqrt{y-z}-1=0\\\sqrt{z-x}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=3\\z=2\end{matrix}\right.\)(TM DKXD)

KL: ...

13 tháng 12 2020

\(\left\{{}\begin{matrix}x^3+xy^2+3\left(x-2y\right)=0\\x^2+xy=3\end{matrix}\right.\)\(\Rightarrow x^3+xy^2+\left(x^2+xy\right)\left(x-2y\right)=0\)\(\Leftrightarrow x^3+xy^2+x^3-x^2y-2xy^2=0\Leftrightarrow2x^3-x^2y-xy^2=0\)\(\Leftrightarrow x\left(2x+y\right)\left(x-y\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=-2x\\x=y\end{matrix}\right.\)

+) \(x=0\Rightarrow0y=3\)(vô nghiệm)

+) y=-2x \(\Rightarrow x^2-2x^2=3\Leftrightarrow-x^2=3\)(vô nghiệm)

+) x=y\(\Rightarrow2x^2=3\Leftrightarrow x^2=\dfrac{3}{2}\Leftrightarrow\left[{}\begin{matrix}x=y=\sqrt{\dfrac{3}{2}}\\x=y=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)

 

NV
19 tháng 1 2021

\(x^3-7x^2y+16xy^2-12y^3=0\)

\(\Leftrightarrow\left(x-3y\right)\left(x-2y\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=3y\end{matrix}\right.\)

Thế xuống pt dưới giải đơn giản

NV
12 tháng 1 2021

Biến đổi pt dưới:

\(x^2-4x+4+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)

Thay vào pt đầu giải bt

12 tháng 1 2021

thanks bạn nha