Cho các số x,y,z thoả mãn đồng thời: x+y+z=1 và \(x^2+y^2+z^2=1\) và \(x^3+y^3+z^3=1\)
Tính tổng S=\(x^{2009}+y^{2010}+z^{2011}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left\{{}\begin{matrix}x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)=0\)
Theo đề: \(x+y+z=1\Leftrightarrow x;y;z\le1\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\1-y\ge0\\1-z\ge0\end{matrix}\right.\)
\(\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)\ge0\)
Dấu bằng xảy ra khi: \(x^2\left(1-x\right);y^2\left(1-y\right);z^2\left(1-z\right)=0\)
Kết hợp đk đầu bài x+y+z=1 suy ra x;y;z là hoán vị (0;0;1)
\(\Rightarrow S=1\)
Ngu như bò đực lặt.
Bài này mà làm ko ra.......................................a
Ta có:\(x^2=1-y^2-z^2\le1\Rightarrow-1\le x\le1\)
Tương tự:\(-1\le y\le1;-1\le z\le1\)
Lại có:\(x^3+y^3+z^3=x^2+y^2+z^2\)
\(\Leftrightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)
Vì \(x\le1;y\le1;z\le1\) nên \(x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)
Dấu "=" xảy ra khi \(\left(x,y,z\right)=\left(0,0,1\right)\) và các hoán vị
\(\Rightarrow S=2020\)
vì x+y+z=1
=> (x+y+z)3 =1
=> x3+y3+z3+3(x+y)(y+z)(x+z)=1
=> 1+ 3(x+y)(y+z)(x+z)=1
=> 3(x+y)(y+z)(x+z) =0
=> (x+y)(y+z)(x+z)=0
=> (x+y)=0 hoặc (y+z)=0 hoặc (x+z)=0
với x+y=0 => x=-y
thay x=-y vào x+y+z=1 ta được
z=1
thay x=-y vào x2+y2+z2=1
=> (-y)2+y2+z2=1
=> 2y2+1=1
=> 2y2=0
=> x=y=0
S=x2009+y2010+z2011
S= 0+0+1
S=1
Vậy S=1
mơn bạn ak