Vì sao phải chia 2 vế cho căn a^2 + b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do \(\begin{array}{l}\sin \alpha = MH \Rightarrow {\sin ^2}\alpha = M{H^2}\\\cos \alpha = OH \Rightarrow {\cos ^2}\alpha = O{H^2}\end{array}\)
Áp dụng định lý Py – Ta – Go vào tam giác OMH vuông tại H ta có:
\(\begin{array}{l}M{H^2} + O{H^2} = O{M^2} = 1\\ \Rightarrow {\sin ^2}\alpha + {\cos ^2}\alpha = 1\end{array}\)
b) Chia cả hai vế cho \({\cos ^2}\alpha \), ta được:
\(\begin{array}{l}\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow {\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}\end{array}\)
c) Chia cả hai vế cho \({\sin ^2}\alpha \), ta được:
\(\begin{array}{l}\frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\\ \Leftrightarrow {\cot ^2}\alpha + 1 = \frac{1}{{{{\sin }^2}\alpha }}\end{array}\)
Đơn giản là em đang xem một lời giải sai. Việc khẳng định $P\leq 0$ hoặc $P>0$ rồi kết luận hàm số không có GTLN là sai.
Bởi vậy những câu hỏi ở dưới là vô nghĩa.
Việc gọi $P$ là hàm số lên lớp cao hơn em sẽ được học, còn bây giờ chỉ cần gọi đơn giản là phân thức/ biểu thức.
Hàm số, có dạng $y=f(x)$ biểu diễn mối liên hệ giữa biến $x$ với biến phụ thuộc $y$. Mỗi giá trị của $x$ ta luôn xác định được một giá trị tương ứng của $y$.
$P=AB=\frac{\sqrt{x}}{\sqrt{x}-1}=1+\frac{1}{\sqrt{x}-1}$
Để $P_{\max}$ thì $\frac{1}{\sqrt{x}-1}$ max
Điều này xảy ra khi $\sqrt{x}-1$ min và có giá trị dương
$\Leftrightarrow x>1$ và $x$ nhỏ nhất
Trong tập số thực thì em không thể tìm được số lớn hơn 1 mà nhỏ nhất được. Như kiểu $1,00000000000000000000....$ (vô hạn đến không biết khi nào thì kết thúc)
Do đó $P$ không có max
Min cũng tương tự, $P$ không có min.
1)
a)
b)
2)
Vậy A không phải là số chính phương
Học tốt nha
a: Hàm số này đồng biến vì \(2-\sqrt{3}>0\)
b: \(f\left(2+\sqrt{3}\right)=4-3-1=0\)
\(f\left(\sqrt{3}\right)=2\sqrt{3}-3-1=2\sqrt{3}-4\)
vì muốn áp dụng coogn thức \(sina.cosb+sinb.cosa=sin\left(a+b\right)\)
ở đây khi chia cho \(\sqrt{a^2+b^2}\Rightarrow PT\Leftrightarrow\frac{a}{\sqrt{a^2+b^2}}sinx+\frac{b}{\sqrt{a^2+b^2}}cosx=\frac{c}{\sqrt{a^2+b^2}}\)
khi tiến hành đặt : \(\frac{a}{\sqrt{a^2+b^2}}=cosy\Rightarrow siny=\sqrt{1-cos^2y}=\frac{b}{\sqrt{a^2+b^2}}\)
khi đó \(PT\Leftrightarrow sinx.cosy+siny.cosx=\frac{c}{\sqrt{a^2+b^2}}\Leftrightarrow sin\left(x+y\right)=\frac{c}{\sqrt{a^2+b^2}}\)
tới đây là giải được pt lượng giác cơ bản rồi nhé
chịu vì không biết