K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 9 2021

vì muốn áp dụng coogn thức \(sina.cosb+sinb.cosa=sin\left(a+b\right)\)

ở đây khi chia cho \(\sqrt{a^2+b^2}\Rightarrow PT\Leftrightarrow\frac{a}{\sqrt{a^2+b^2}}sinx+\frac{b}{\sqrt{a^2+b^2}}cosx=\frac{c}{\sqrt{a^2+b^2}}\)

khi tiến hành đặt : \(\frac{a}{\sqrt{a^2+b^2}}=cosy\Rightarrow siny=\sqrt{1-cos^2y}=\frac{b}{\sqrt{a^2+b^2}}\)

khi đó \(PT\Leftrightarrow sinx.cosy+siny.cosx=\frac{c}{\sqrt{a^2+b^2}}\Leftrightarrow sin\left(x+y\right)=\frac{c}{\sqrt{a^2+b^2}}\)

tới đây là giải được pt lượng giác cơ bản rồi nhé

7 tháng 9 2021

chịu vì không biết

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a)    Do \(\begin{array}{l}\sin \alpha  = MH \Rightarrow {\sin ^2}\alpha  = M{H^2}\\\cos \alpha  = OH \Rightarrow {\cos ^2}\alpha  = O{H^2}\end{array}\)

Áp dụng định lý Py – Ta – Go vào tam giác OMH vuông tại H ta có:

\(\begin{array}{l}M{H^2} + O{H^2} = O{M^2} = 1\\ \Rightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\end{array}\)

b)    Chia cả hai vế cho \({\cos ^2}\alpha \), ta được:

\(\begin{array}{l}\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow {\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }}\end{array}\)

c)    Chia cả hai vế cho \({\sin ^2}\alpha \), ta được:

\(\begin{array}{l}\frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\\ \Leftrightarrow {\cot ^2}\alpha  + 1 = \frac{1}{{{{\sin }^2}\alpha }}\end{array}\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Đơn giản là em đang xem một lời giải sai. Việc khẳng định $P\leq 0$ hoặc $P>0$ rồi kết luận hàm số không có GTLN là sai.

Bởi vậy những câu hỏi ở dưới là vô nghĩa.

Việc gọi $P$ là hàm số lên lớp cao hơn em sẽ được học, còn bây giờ chỉ cần gọi đơn giản là phân thức/ biểu thức.

Hàm số, có dạng $y=f(x)$ biểu diễn mối liên hệ giữa biến $x$ với biến phụ thuộc $y$. Mỗi giá trị của $x$ ta luôn xác định được một giá trị tương ứng của $y$.

 

 

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

$P=AB=\frac{\sqrt{x}}{\sqrt{x}-1}=1+\frac{1}{\sqrt{x}-1}$

Để $P_{\max}$ thì $\frac{1}{\sqrt{x}-1}$ max

Điều này xảy ra khi $\sqrt{x}-1$ min và có giá trị dương 

$\Leftrightarrow x>1$ và $x$ nhỏ nhất

Trong tập số thực thì em không thể tìm được số lớn hơn 1 mà nhỏ nhất được. Như kiểu $1,00000000000000000000....$ (vô hạn đến không biết khi nào thì kết thúc)

Do đó $P$ không có max

Min cũng tương tự, $P$ không có min.

19 tháng 10 2017

Mik thấy vầy nè 

x^2-y^2=xy-y^2=0 (Vì x=y)

9 tháng 11 2023

1)

a) �=3+32+33+34+35+36+....+328+329+330

⇔�=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔�=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔�=3.13+34.13+....+328.13

⇔�=13(3+34+....+328)⋮13(����)

b) �=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔�=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔�=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔�=3.364+....+325.364

⇔�=364(3+35+310+....+325)

 

2) �=3+32+33+....+330

⇔3�=3(3+32+33+....+330)

⇔3�=32+33+34+....+330+331

⇔3�−�=(32+33+34+....+330+331)−(3+32+33+....+330)

⇔2�=331−3

⇔�=331−32

Vậy A không phải là số chính phương
Học tốt nha

a: Hàm số này đồng biến vì \(2-\sqrt{3}>0\)

b: \(f\left(2+\sqrt{3}\right)=4-3-1=0\)

\(f\left(\sqrt{3}\right)=2\sqrt{3}-3-1=2\sqrt{3}-4\)