1. Tìm x thuộc Z
a, ( 2x^2+4). ( x+3) > 0
b, ( x^2 + 5) .( 4 - x) < 0
c ,( x^2 - 1) .( x + 5 )=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{-5}>0\)
\(\Rightarrow-5x>0\)
\(\Rightarrow5x< 0\)
\(\Rightarrow x< 0\)
\(\Rightarrow x\in(-1,-2,-3,...)\)
b) \(\frac{2x}{5}=0\)
\(\Rightarrow2x=0\)
\(\Rightarrow x=0\)
c) \(0< \frac{x}{1}< 1\)
\(\Rightarrow0< x< 1\) mà x\(\in z\)
\(\Rightarrow x\in\varnothing\)
d) \(\frac{3x}{6}=1\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
e) \(2< \frac{x}{3}< 4\)
\(\Rightarrow\)\(6< x< 12\)
\(x\in(7,8,9,10,11,12)\)
Làm câu a và b thoy nhé, câu c tương tự câu a, câu d và e thì dễ rồi.
a) Vì \(\left(3x+1\right)\left(2x-4\right)< 0\)
\(\Rightarrow3x+1>0\) và \(2x-4< 0\)
hoặc \(3x+1< 0\) và \(2x-4>0\)
+) \(3x+1>0\Rightarrow x>\frac{-1}{3}\left(1\right)\)
\(2x-4< 0\Rightarrow x< 2\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{-1}{3}< x< 2\)
+) \(3x+1< 0\Rightarrow x< \frac{-1}{3}\left(3\right)\)
\(2x-4>0\Rightarrow x>2\left(4\right)\)
Từ (3) và (4) suy ra \(2< x< \frac{-1}{3}\)
\(\Rightarrow\) vô lý.
Vậy \(\frac{-1}{3}< x< 2.\)
b) Do \(\left(-x-5\right)\left(2x+1\right)>0\)
\(\Rightarrow-x-5>0\) và \(2x+1>0\)
hoặc \(-x-5< 0\) và \(2x+1< 0\)
+) \(-x-5>0\Rightarrow x>-5\left(5\right)\)
\(2x+1>0\Rightarrow x>\frac{-1}{2}\left(6\right)\)
Từ (5) và (6) suy ra \(x>\frac{-1}{2}\)
+) \(-x-5< 0\Rightarrow x< -5\left(7\right)\)
\(2x+1< 0\Rightarrow x< \frac{-1}{2}\) (8)
Từ (7) và (8) suy ra \(x< -5\)
Vậy \(\left[\begin{matrix}x>\frac{-1}{2}\\x< -5\end{matrix}\right.\).
d)\(\left|x+3\right|< 5\)
\(\Rightarrow-5< x+3< 5\)
\(\Rightarrow-8< x< 2\)
a) \(\left(2x+10\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\)\(2\left(x+5\right)\left(x^2-3x+3x-9\right)=0\)
\(\Leftrightarrow\)\(2\left(x+5\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\)\(x+5=0\) \(\Leftrightarrow\)\(x=-5\)
hoặc \(x-3=0\) hoặc \(x=3\)
hoặc \(x+3=0\) hoặc \(x=-3\)
Vậy....
a: =>x+3>0
hay x>-3
b: =>4-x<0
hay x>4
c: =>x2-1=0 hoặc x+5=0
hay \(x\in\left\{1;-1;-5\right\}\)