Phân tích đa thức thành nhân tử (x2-x-2)2+(x-2)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Đặt \(t=\left(x^2-x+1\right)\)
\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)
\(=t^2-5xt+4x^2\)
\(=t^2-4xt-xt+4x^2\)
\(=t\left(t-4x\right)-x\left(t-4x\right)\)
\(=\left(t-4x\right)\left(t-x\right)\)
\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)
\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)
\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)
Cách 1: x2 – 4 + (x – 2)2
(Xuất hiện hằng đẳng thức (3))
= (x2– 22) + (x – 2)2
= (x – 2)(x + 2) + (x – 2)2
(Có nhân tử chung x – 2)
= (x – 2)[(x + 2) + (x – 2)]
= (x – 2)(x + 2 + x – 2)
= (x – 2)(2x)
= 2x(x – 2)
Cách 2: x2 – 4 + (x – 2)2
(Khai triển hằng đẳng thức (2))
= x2 – 4 + (x2 – 2.x.2 + 22)
= x2 – 4 + x2 – 4x + 4
= 2x2 – 4x
(Có nhân tử chung là 2x)
= 2x(x – 2)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
b) \(x^2y-x^3-10y+10x\)
\(=x^2\left(y-x\right)-10\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2-10\right)\)
c) \(x^2\left(x-2\right)+49\left(2-x\right)\)
\(=\left(x-2\right)\left(x^2-49\right)\)
\(=\left(x-2\right)\left(x-7\right)\left(x+7\right)\)