K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\) => \(\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)

Thay vào , ta có :

x . y = 490

=> 2k . 5k = 490

=> 10 . k2 = 490

=> k2 = 49

=> k = 7 hoặc k = -7

=> \(\left\{{}\begin{matrix}k=7\\k=-7\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}x=14;y=35\\x=-14;y=-35\end{matrix}\right.\)

2 tháng 1 2023

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)

Câu 1: 

c: 2x=3y

nên x/3=y/2

=>x/9=y/6

5y=3z

nên y/3=z/5

=>y/6=z/10

=>x/9=y/6=z/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{3x+3y-7z}{3\cdot9+3\cdot6-7\cdot10}=\dfrac{35}{-25}=-\dfrac{7}{5}\)

Do đó: x=-63/5; y=-42/5; z=-14

Bài 2:

Gọi ba số lần lượt là a,b,c

Theo đề, ta có: 4/3a=b=3/4c

\(\Leftrightarrow\dfrac{a}{\dfrac{3}{4}}=\dfrac{b}{1}=\dfrac{c}{\dfrac{4}{3}}\)

\(\Leftrightarrow\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}\)

Đặt \(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}=k\)

=>a=9k; b=12k; c=16k

Theo đề, ta có: \(a^2+b^2+c^2=481\)

\(\Leftrightarrow81k^2+144k^2+256k^2=481\)

=>k2=1

Trường hợp 1: k=1

=>a=9; b=12; c=16

Trường hợp 2: k=-1

=>a=-9; b=-12; c=-16

 

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30

24 tháng 1 2018

Ta có : \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{xyz}{2\cdot3\cdot5}=\dfrac{800}{30}=\dfrac{80}{3}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{80}{3}\Rightarrow x=\dfrac{160}{3}\)\(53\)

\(\Rightarrow\dfrac{y}{3}=\dfrac{80}{3}\Rightarrow y=80\)

\(\Rightarrow\dfrac{z}{5}=\dfrac{80}{3}\Rightarrow z=\dfrac{400}{3}\) ∼ 133

24 tháng 1 2018

Mk xl, bài lúc nãy mk lm là sai, đây ms là bài đúng:

Theo bài ra ta có : \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\\xyz=800\left(1\right)\end{matrix}\right.\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\) (2)

Thay (2) vào ( 1) ta có :​ \(2k\cdot3k\cdot5k=800\)

\(.....................................................................\)

Rồi cứ tìm ra \(k\) rồi thay \(k\) vào mà tính \(x,y,z\) bth thôi bạn ạ

28 tháng 8 2023

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)

b) \(\left|2x+3\right|=x+2\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)

28 tháng 8 2023

Đính chính

Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

Do đó: x=16; y=24; z=30

Ta có:

`x/10=y/5 -> x/20=y/10` `(1)`

`y/2=z/3 -> y/10=z/15` `(2)`

Từ `(1)` và `(2)`

`-> x/20=y/10=z/15` `-> x/20=y/10=(4z)/60`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/20=y/10=(4z)/60=(x+4z)/(20+60)=320/80=4`

`-> x/20=y/10=z/15=4`

`-> x=20*4=80, y=10*4=40, z=15*4=60`.

7 tháng 5 2023

Ta có:

\(\left\{{}\begin{matrix}\dfrac{x}{10}=\dfrac{y}{5}\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}\\\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\end{matrix}\right.\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}=\dfrac{x+4z}{20+4.15}=\dfrac{320}{80}=4\)

Do đó:

\(\dfrac{x}{20}=4\Rightarrow x=80\)

\(\dfrac{y}{10}=4\Rightarrow y=40\)

\(\dfrac{z}{15}=4\Rightarrow z=60\)

15 tháng 9 2021

\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)

\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)

⇒x=70;y=105;z=84

15 tháng 9 2021

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\)

⇒x=8;y=12;z=20