Chứng minh n^5-6n chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=n^5-n-5n
n^5-n chia hết cho 5 do 5 là số nguyên tố
-5n chia hết cho 5
=>A chia hết cho 5
Ta có:\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)=6n^2+31n+5-\left(6n^2+7n-5\right)\)
\(=38n+10\)
\(2\left(19n+5\right)⋮2\left(đpcm\right)\)
a: \(=n^2+5n-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: \(=\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)
\(=5n^2+5n⋮5\)
c: \(=6n^2+30n+n+5-6n^2-3n-10n-5\)
\(=18n⋮2\)
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10\)(rút gọn)
\(=2.\left(12n+5\right)⋮2v\text{ới}\forall n\in Z\)
(8n+1) không chia hết cho 2 vì 8:2 =>8n:2và 1ko chia hết cho 2=>(8n+1) không chia hết cho 2
còn 6n+5 bn làm tương tự nha
Ta có:
\(C=\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(C=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(C=24n+10\)
\(C=2\left(12n+5\right)\)
Vậy C chia hết cho 2 với mọi giá trị n nguyên
A = n⁵ - 6n =n5-n-5n
= n.(n⁴ - 1) -5n
= n.(n² + 1)(n² - 1) -5n
= n.(n² + 1)(n - 1)(n + 1)-5n
= n.(n² - 4 + 5)(n - 1)(n + 1) -5n
= n[(n-2)(n+2)+5](n - 1)(n + 1) -5n
= [n(n-2)(n+2)+5n](n - 1)(n + 1) -5n
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) -5n
Ta có:
+n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5
+5n(n - 1)(n + 1) chia hết cho 5
+5n chia hết chon 5
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)-5n chia hết cho 5
=> A chia hết cho 5
Đặt biêu thức =A nha