K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

=(30+31+32+33)+34.(30+31+32+33)+38.(30+31+32+33)

=(30+31+32+33).(1+34+38)

=40.(30+31+32+33)\(⋮\)\(⋮\)chia hết cho 40

=>đpcm

16 tháng 1 2022

\(A=3+3^2+3^3+...+3^{60}\)

\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)

\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=\left(3+3^5+...+3^{57}\right)\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40\left(3+3^5+...+3^{57}\right)⋮40\)

16 tháng 1 2022

A=3+32+33+...+360

 

 

A=3+32+33+...+360A=(3+32+33+34)+(35+36+37+38)+...+(357+358+359+360)A=(3+32+33+34)+(35+36+37+38)+...+(357+358+359+360)

A=3(1+3+32+33)+35(1

31 tháng 8 2017

Số số hạng: (99-0):1+1=99(số hạng)

1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2)      [vì có 99 số hạng chia hết cho 3]

                          =31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.

31 tháng 8 2017

Số số hạng là :

( 99 - 0 ) : 1 + 1 = 99 ( số hạng )

\(1+5+5^2\)\(+...+5^{99}\)\(=\)\(\left(1+5+5^2\right)+5^3\)\(.\)\(\left(1+5+5^2\right)\)\(+\)\(5^6\)\(.\)\(\left(1+5+5^2\right)\)\(+...+\)\(5^{99}\)\(.\)\(\left(1+5+5^2\right)\)      ( Vì có 99 số hạng chia hết cho 3 )

\(\Rightarrow\)\(31+5^3\)\(.\)\(31\)\(+\)\(5^6\)\(.\)\(31\)\(+...+\)\(5^{99}\)\(.\)\(31\)

\(=\)\(1+5+5^2\)\(+...+\)\(5^{99}\)\(.\)\(31\)chia hết cho \(31\)

4 tháng 9 2017

A = 1 x ( 1 + 5 + 52) + 53 x ( 1 + 5 + 52 ) + ... + 52003 x ( 1 + 5 + 5)

A = 1 x 31 + 53 x 31 + ... + 52003 x 31

A = 31 x ( 1 + 5+ ... + 52003)

\(\Rightarrow A⋮31\left(đpcm\right)\)

23 tháng 11 2021

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)

\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)

3 tháng 10 2023

a)

\(3S=3^2+3^3+...+3^{81}\)

\(3S-S=\left(3^2+3^3+...+3^{81}\right)-\left(3+3^2+...+3^{80}\right)\)

\(2S=3^{81}-3\)

\(S=\dfrac{3^{81}-3}{2}\)

b) sai đề?

c)

\(S=\left(3^1+3^2+...+3^4\right)+\left(3^5+3^6+...+3^8\right)+...+\left(3^{77}+3^{78}+3^{79}+3^{80}\right)\)

\(S=3^1\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+3^{77}\left(1+3+9+27\right)\)

\(S=\left(3^1+3^5+...+3^{77}\right)\cdot40\)

Do đó S chia hết cho 40

3 tháng 10 2023

a) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰

⇒ 3S = 3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹

⇒ 2S = 3S - S

= (3² + 3³ + 3⁴ + ... + 3⁸⁰ + 3⁸¹) - (3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰)

= 3⁸¹ - 3

⇒ S = (3⁸¹ - 3)/2

b) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰

= (3 + 3² + 3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸ + 3⁹ + 3¹⁰) + ... + 3⁷⁶ + 3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)

= 3(1 + 3 + 3² + 3³ + 3⁴) + 3⁶(1 + 3 + 3² + 3³ + 3⁴) + ... + 3⁷⁶(1 + 3 + 3² + 3³ + 3⁴)

= 3.121 + 3⁶.121 + ... + 3⁷⁶.121

= 121.(3 + 3⁶ + ... + 3⁷⁶)

= 11.11(3 + 3⁶ + ... + 3⁷⁶) ⋮ 11

Vậy S ⋮ 11

c) S = 3¹ + 3² + 3³ + ... + 3⁷⁹ + 3⁸⁰

= (3 + 3² + 3³ + 3⁴) + (3⁵ + 3⁶ + 3⁷ + 3⁸) + ... + (3⁷⁷ + 3⁷⁸ + 3⁷⁹ + 3⁸⁰)

= 3(1 + 3 + 3² + 3³) + 3⁵(1 + 3 + 3² + 3³) + ... + 3⁷⁷(1 + 3 + 3² + 3³)

= 3.40 + 3⁵.40 + ... + 3⁷⁷.40

= 40(3 + 3⁵ + ... + 3⁷⁷) ⋮ 40

Vậy S ⋮ 40

29 tháng 12 2020

102018+5=100..05(2017 số 0)

vì tận cùng là số 5 nên tổng 102018+5 chia hết cho 5

Tổng các chữ số: 1+0.2017+5=6

=>tổng 102018+5 chia hết cho 3

29 tháng 12 2020

ta có : 102018+5= 100...005(có 2017 chữ số 0)

ta thấy 100...005 (có 2017 chữ số 0)  có chữ số tận cùng là 5 nên chia hết cho 5

và 100...005(có 2017 chữ số 0) có tổng các chữ số là: 1+0+0+......+0+0+5=6 chia hết cho 3

                                                                                           2017 chữ số 0

18 tháng 10 2023

Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰

= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)

= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)

= 3.4 + 3³.4 + ... + 3⁹⁹.4

= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4

Vậy A ⋮ 4

18 tháng 10 2023

.