Tìm x biết 5x(5x+1)(5x+2) < 518
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(25x^2+10x+1-\left(25x^2-9\right)=30\)
\(25x^2+10x+1-25x^2+9=30\)
\(10x+10=30\)
\(10x=20\)
\(x=2\)
Bài làm:
a) \(x+5x^2=0\)
\(\Leftrightarrow x\left(1+5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+5x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)
b) \(x\left(x-1\right)=x-1\)
\(\Leftrightarrow x^2-x-x+1=0\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
c) \(5x\left(x-1\right)=1-x\)
\(\Leftrightarrow5x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{5}\end{cases}}\)
d) \(\left(3x-4\right)^2-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(2x-5\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{4}\end{cases}}\)
\(a,x+5x^2=0< =>x\left(5x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=0\\5x+1=0\end{cases}< =>\orbr{\begin{cases}x=0\\5x=-1\end{cases}< =>\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}}}\)
\(b,x\left(x-1\right)=x-1< =>x^2-x=x-1\)
\(< =>x^2-x-x+1=0< =>x\left(x-1\right)-\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(x-1\right)=0< =>x=1\)
\(c,5x\left(x-1\right)=1-x< =>5x^2-5x=1-x\)
\(< =>5x^2-5x+x-1=0< =>5x^2-4x-1=0\)
\(< =>5x^2-5x+x-1=0< =>5x\left(x-1\right)+x-1=0\)
\(< =>\left(5x+1\right)\left(x-1\right)=0< =>\orbr{\begin{cases}5x+1=0\\x-1=0\end{cases}}\)
\(< =>\orbr{\begin{cases}5x=-1\\x=1\end{cases}< =>\orbr{\begin{cases}x=-\frac{1}{5}\\x=1\end{cases}}}\)
\(d,\left(3x-4\right)^2-\left(x+1\right)^2=0\)
\(< =>9x^2-24x+16-x^2-2x-1=0\)
\(< =>8x^2-26x+15=0< =>8\left(x^2-\frac{13}{4}x+\frac{169}{64}\right)-\frac{2082}{64}=0\)
\(< =>\left(x-\frac{13}{8}\right)^2=\frac{2082}{512}=\frac{2082}{16\sqrt{2}}\)
\(< =>\orbr{\begin{cases}x-\frac{13}{8}=\frac{\sqrt{2082}}{4\sqrt[4]{2}}\\x-\frac{13}{8}=-\frac{\sqrt{2082}}{4\sqrt[4]{2}}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{13}{8}+\frac{\sqrt{2082}}{4\sqrt[4]{2}}\\x=\frac{13}{8}-\frac{\sqrt{2082}}{4\sqrt[4]{2}}\end{cases}}\)(nghiệm vô tỉ)
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
đặt biểu thức của bạn là A
Đê A <0 thì\(\orbr{\begin{cases}\left(\frac{2}{3}x-\frac{1}{5}\right)< 0;\left(\frac{3}{5}x+\frac{2}{3}\right)>0\\\left(\frac{2}{3}x-\frac{1}{5}\right)>0;\left(\frac{3}{5}x+\frac{2}{3}\right)< 0\end{cases}}\)
<=>\(\hept{\begin{cases}\frac{2}{3}x< \frac{1}{5};\frac{3}{2}x>\frac{-2}{3}\\\frac{2}{3}x>\frac{1}{5};\frac{3}{5}x< \frac{-2}{3}\end{cases}}\)(mình viết nhầm. Cái này là ngoặc vuông nhà)
<=> \(\orbr{\begin{cases}x< \frac{3}{10};x>\frac{-4}{9}\left(chon\right)\\x>\frac{3}{10};x< \frac{-4}{9}\left(loai\right)\end{cases}}\)
Vậy\(\frac{-4}{9}< x< \frac{3}{10}\)thì A<0
\(2x-3>5x-4\)
\(\Leftrightarrow2x-5x>-4+3\)
\(\Leftrightarrow-3x>-1\)
\(\Leftrightarrow x>\frac{1}{3}\)
\(-5x+6< \frac{1}{3}\)
\(\Leftrightarrow-5x< \frac{1}{3}-6\)
\(\Leftrightarrow-5x< \frac{1}{3}-\frac{18}{3}\)
\(\Leftrightarrow-5x< \frac{-17}{3}\)
\(\Leftrightarrow x< \frac{-17}{3}\div\left(-5\right)\)
\(\Leftrightarrow x< \frac{17}{15}\)
1 , <=> 25x^2 + 10x + 1 - ( 25x^2 - 9) = 30
<=> 25x^2 + 10x + 1 - 25x^2 + 9 = 30
<=> 10x + 10 = 30
<=> 10 ( x + 1) = 30
<=> x + 1 = 3
<=> x = 2
2, ( x + 3)(x^2 - 3x + 9 ) - x(x+2)(x-2) = 15
<=> x^3 - 27 - x(x^2 - 4) = 15
<=> x^3 - 27 - x^3 + 4x = 15
<=> 4x -27 = 15
<=> 4x = 15 + 27
<=> 4x =42
<=> x = 42/4 = 21/2
******************
\(\left(\frac{2}{3}x-\frac{1}{5}\right).\left(\frac{3}{5}x+\frac{2}{3}\right)< 0\)
TH1: \(\frac{2}{3}x-\frac{1}{5}< 0\)
\(\frac{2}{3}x< \frac{1}{5}\)
\(x< \frac{1}{5}:\frac{2}{3}\)
\(x< \frac{3}{10}\)
TH2: \(\frac{3}{5}x+\frac{2}{3}< 0\)
\(\frac{3}{5}x< \frac{-2}{3}\)
\(x< \frac{-2}{3}:\frac{3}{5}\)
\(x< \frac{-10}{9}\)
KL: x < 3/10 hoặc x < -10/9 thì (2/3x-1/5).(3/5x+2/3) < 0
=> 53x+3 < 518
<=> 3x+3 < 18
<=> 3x < 15
<=> x < 5