Cho \(a+b+c⋮6\)CMR:\(a^6+b^6+c^6⋮30\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt biểu thức đã cho là $P$
Do $a+b+c=6$ nên:
$P=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}$
$2P=\frac{2ab}{2a+b}+\frac{2bc}{2b+c}+\frac{2ca}{2c+a}$
$=b-\frac{b^2}{2a+b}+c-\frac{c^2}{2b+c}+a-\frac{a^2}{2c+a}$
$=a+b+c-\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)$
Áp dụng BĐT Cauchy-Schwarz:
$\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)\geq \frac{(b+c+a)^2}{2a+b+2b+c+2c+a}=\frac{a+b+c}{3}$
Do đó: $2P\leq a+b+c-\frac{a+b+c}{3}=\frac{2}{3}(a+b+c)=\frac{2}{3}.6=4$
$\Rightarrow P\leq 2$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
Lời giải:
Đặt biểu thức đã cho là $P$
Do $a+b+c=6$ nên:
$P=\frac{ab}{2a+b}+\frac{bc}{2b+c}+\frac{ca}{2c+a}$
$2P=\frac{2ab}{2a+b}+\frac{2bc}{2b+c}+\frac{2ca}{2c+a}$
$=b-\frac{b^2}{2a+b}+c-\frac{c^2}{2b+c}+a-\frac{a^2}{2c+a}$
$=a+b+c-\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)$
Áp dụng BĐT Cauchy-Schwarz:
$\left(\frac{b^2}{2a+b}+\frac{c^2}{2b+c}+\frac{a^2}{2c+a}\right)\geq \frac{(b+c+a)^2}{2a+b+2b+c+2c+a}=\frac{a+b+c}{3}$
Do đó: $2P\leq a+b+c-\frac{a+b+c}{3}=\frac{2}{3}(a+b+c)=\frac{2}{3}.6=4$
$\Rightarrow P\leq 2$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
Lời giải:
Biến đổi:
\((a+b)(b+c)(c+a)-2abc=ab(a+b)+bc(b+c)+ca(c+a)\)
\(=ab(a+b+c)+bc(a+b+c)+ac(a+b+c)-3abc\)
\(=(a+b+c)(ab+bc+ac)-3abc\)
Ta thấy , nếu cả 3 số \(a,b,c\) đều lẻ, thì \(a+b+c\) lẻ, do đó \(a+b+c\not\vdots 6\) (không t/m điều kiện đề bài)
Do đó, tồn tại ít nhất một số trong 3 số $a,b,c$ là số chẵn
Kéo theo \(3abc\vdots 6\)
Mà \(a+b+c\vdots 6\Rightarrow (a+b+c)(ab+bc+ac)\vdots 6\)
\(\Rightarrow (a+b+c)(ab+bc+ac)-3abc\vdots 6\)
\(\Leftrightarrow (a+b)(b+c)(c+a)-2abc\vdots 6\) (đpcm)
a) A = 1 + 2 + 22 + 23 + ...... + 239
= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + .....+ (236 + 237 + 238 + 239)
= (1 + 2 + 22 + 23) + 24(1 + 2 + 22 + 23) + .......+ 236(1 + 2 + 22 + 23)
= 15 (1 + 24 + ...... + 236 ) \(⋮15\)
Vậy A là bội của 15
b) B = 2 + 22 + 23 + ...... + 22004
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ...... + (22001 + 22002 + 22003 + 22004)
= 2(1 + 2 + 23 + 24) + 25(1 + 2 + 22 + 23) + ....... + 22001(1 + 2 + 22 +23)
= 15 (2 + 25 + ..... + 22001) \(⋮15\)
Ta thấy B \(⋮2\)(vì các số hạng của B đều chia hết cho 2)
mà (2; 15) = 1
nên B \(⋮30\)
c) Gọi 3 số lẻ liên tiếp là: 2k+1; 2k+3; 2k+5
Ta có: 2k+1 + 2k+3 + 2k+5 = 6k + 9
Ta thấy 6k chia hết cho 6 nhưng 9 ko chia hết cho 6
nên 6k + 9 ko chia hết cho 6
Vậy tổng của 3 số lẻ liên tiếp ko chia hết cho 6
\(A=\dfrac{a^6}{b^3}+\dfrac{b^6}{c^3}+\dfrac{c^6}{a^3}=\dfrac{1}{3}\left[\left(\dfrac{a^6}{b^3}+\dfrac{a^6}{b^3}+\dfrac{b^6}{c^3}\right)+\left(\dfrac{b^6}{c^3}+\dfrac{b^6}{c^3}+\dfrac{c^6}{a^3}\right)+\left(\dfrac{c^6}{a^3}+\dfrac{c^6}{a^3}+\dfrac{a^6}{b^3}\right)\right]\)
\(\ge\dfrac{1}{3}.3.\left(\dfrac{a^4}{c}+\dfrac{b^4}{a}+\dfrac{c^4}{b}\right)=\dfrac{a^4}{c}+\dfrac{b^4}{a}+\dfrac{c^4}{b}\)