chứng minh định lí một đường thẳng song song với 2 đường thẳng phân biệt thì chúng song song với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hỏi nhiều quá , mà thà bạn nói ko cần vẽ hình thì còn giải , đằng này đã vẽ hình còn phải ghi GT , KL . mệt !!!!!!!!!!! @_@
Chứng Minh Định lý hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau
ta có a, b, c là 3 đường thẳng phân biệt và a//b, c//b
giả sử a cắt c tại O
như vậy qua O ta kẻ được hai đường thẳng a và c cùng // với c như vậy trái với tiên đề Oclit (qua 1 điểm nằm ngoài đường thẳng ta chỉ kẻ được 1 và chỉ 1 đường thẳng // vơi đường thẳng đã cho)
=> a //c
Chứng minh định lí hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song
Cho d'∥d, d"∥d, a\(⊥\)d
- d' ∥ d (gt)
a\(⊥\)d (gt)
\(\Rightarrow\) a\(⊥\)d' (từ vuông góc đến song song) (1) - d" ∥ d (gt)
a\(⊥\)d (gt)
\(\Rightarrow\) a\(⊥\)d" (từ vuông góc đến song song) (2) - Từ (1) và (2) \(\Rightarrow\)d' ∥ d" (từ vuông góc đến song song)
d' ∥ d (gt), d" ∥ d (gt)
\(\Rightarrow\)d ∥ d' ∥ d"
c) Giả sử có 2 đường thẳng phân biệt a,b cùng vuông góc với một đường thẳng c.
Ta có: \(\widehat {{A_1}} = \widehat {{B_2}}\), mà hai góc này ở vị trí đồng vị nên a//b (Dấu hiệu nhận biết 2 đường thẳng song song)
Như vậy, định lí trên có thể được suy ra trực tiếp từ định lí về dấu hiệu nhận biết hai đường thẳng song song.
GT:Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba
KL:chúng song song với nhau