K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

Đặt \(A=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-7x\right)^2-100\ge-100\)

Dấu " = " khi \(x^2-7x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

Vậy \(MIN_A=-100\) khi x = 0 hoặc x = 7

11 tháng 8 2015

\(B=\left(x^2-7x-10\right)\left(x-2\right)\left(x-5\right)=\left(x^2-7x-10\right)\left(x^2-7x+10\right)\)

\(=\left(x^2-7x\right)^2-100\ge-100\left(\text{vì }\left(x^2-7x\right)^2\ge0\right)\)

\(\text{Dấu "=" xảy ra khi :}\)

\(x^2-7x=0\)

\(\Leftrightarrow x=0\text{ hoặc }x=7\)

\(\text{Vậy GTNN của B là -100 tại x=0 hoặc x=7}\)

Y
29 tháng 6 2019

a) \(\left|x-2000\right|+\left|x-2002\right|=\left|x-2000\right|+\left|2002-x\right|\)

\(\ge\left|x-2000+2002-x\right|=2\) (1)

Dấu "=" \(\Leftrightarrow\left(x-2000\right)\left(2002-x\right)\ge0\)

\(\Leftrightarrow2000\le x\le2002\)

+ \(\left|x-2001\right|\ge0\forall x\). "=" \(\Leftrightarrow x=2001\) (2)

Từ (1) và (2) suy ra \(A\ge2\)

Dấu "=" \(\Leftrightarrow x=2001\)

b) \(B=\left|x-8\right|+\left|x-9\right|+\left|x-10\right|+\left|x+11\right|\)

+ \(\left|x-10\right|+\left|x+11\right|=\left|x+11\right|+\left|10-x\right|\)

\(\ge\left|x+11+10-x\right|=21\) (3)

Dấu "=" \(\Leftrightarrow\left(x+11\right)\left(10-x\right)\ge0\Leftrightarrow-11\le x\le10\)

+ \(\left|x-8\right|+\left|x-9\right|\ge\left|x-8+9-x\right|=1\) (4)

"=" \(\Leftrightarrow\left(x-8\right)\left(9-x\right)\ge0\Leftrightarrow8\le x\le9\)

Từ (3) và (4) suy ra \(B\ge22\)

"=" \(\Leftrightarrow8\le x\le9\)

24 tháng 6 2023

1, \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)

\(A=5x^3-15x+7x^2-5x^3-7x^2\)

\(A=\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)-15x\)

\(A=-15x\)

Thay \(x=-5\) vào A ta được:

\(-15\cdot-5=75\)

Vậy: ....

2. \(B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)

\(B=x^3-3x+7x^2-5x^3-7x^2\)

\(B=\left(x^3-5x^3\right)+\left(7x^2-7x^2\right)-3x\)

\(B=-4x^3-3x\)

Thay \(x=10,y=-1\) vào B ta được:

\(-4\cdot10^3-3\cdot10=-4\cdot1000-3\cdot10=-4000-30=-4030\)

Vậy: ....

24 tháng 6 2023

B =... có biến y đâu mà thay vô như thật vậy:v

11 tháng 3 2020

1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)

<=> 21x - 100x + 900 = 80x + 6

<=> -79x - 80x = 6 - 900

<=> -159x = -894

<=> x = 258/53

Vậy S = {258/53}

2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)

<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5

<=> 7x2 + 2x - 7x2 + 14x = -5 + 2

<=> 16x = 3

<=> x = 3/16

Vậy S  = {3/16}

11 tháng 3 2020

3) 4(3x - 2) - 3(x - 4) = 7x+  10

<=> 12x - 8 - 3x + 12 = 7x + 10

<=> 9x - 7x = 10 - 4

<=> 2x = 6

<=> x = 3

Vậy S = {3}

4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)

<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80

<=> 4x2 + 20x - 4x2 - 32x = -80 - 16

<=> -12x = -96

<=> x = 8

Vậy S = {8}

22 tháng 2 2019

\(A=8\left(x-2\right)^4+8\ge8\)

23 tháng 2 2019

chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm 

vì vậy mình sẽ ko cho bạn

25 tháng 2 2019

\(a.\Leftrightarrow2|x-6|-|x-6|-2=0\)

\(\Leftrightarrow|x-6|-2=0\)

\(\Leftrightarrow|x-6|=2\)

\(+x-6=2\)

\(\Leftrightarrow x=8\)

\(+x-6=-2\)

\(\Leftrightarrow x=4\)

v...

25 tháng 2 2019

\(b.\Leftrightarrow-4\left(5-x\right)-7\left(5-x\right)+10\left(5-x\right)=-3\)

\(\Leftrightarrow\left(5-x\right)\left(10-4-7\right)=-3\)

\(\Leftrightarrow-1.\left(5-x\right)=-3\)

\(\Leftrightarrow5-x=3\)

\(\Leftrightarrow x=2\)

v...

a: Ta có: \(\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)

\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)

\(=8\left(7x+4\right)\)

=56x+32

b: Ta có: \(8\left(x-2\right)^2-3\left(x^2-4x-5\right)-5x^2\)

\(=8x^2-32x+32-3x^2+12x+15-5x^2\)

\(=-20x+47\)

c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)

\(=x^3+3x^2+3x+1-x^3+1-3x^2-3x\)

=2

20 tháng 8 2021

câu b cô viết sai đề rồi ạ

25 tháng 5 2017

a) Ta có ;

|x - 23| + |x - 10| <=> |23 - x| + |x - 10|

|23 - x| + |x - 10| \(\ge\left|23-x+x-10\right|=13\)

=> Min = 13

Mấy câu kia chuyển đổi tý , xong là áp dụng BĐT |a| + |b| \(\ge\) |a + b| là được

25 tháng 5 2017

a) Ta có :

\(\left|x-23\right|\ge0;\left|x-10\right|\ge0\)

\(\Rightarrow\left|x-23\right|+\left|x-10\right|\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow x-23=0\)\(x-10=0\)

=> x = 23 và x= 10

Vậy Biểu thức \(\left|x-23\right|+\left|x-10\right|\) đạt GTNN ki x = 23 và x=10

b) ,c) Tương tự nha bạn Bảo Trâm

4 tháng 8 2017

a)2x^2-4xy+4y^2+2x+5=x^2-4xy+4y^2+x^2+2x+1+4=(x-2y)^2+(x+1)^2+4>=4(dấu = tự tìm nhé)

b)x(1-x)(x-3)(4-x)=x(x-1)(x-3)(x-4)

=(x^2-4x)(x^2-4x+3)

Đặt x^2-4x=t(t>=-4) bt viết lại t(t+3)=t^2+3t>=-9/4

Dấu= xảy ra khi t=-3/2 >>>tìm x