B1 + B2 ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a_1,=\left(x^3+x^2-2x^2-2x+3x+3\right):\left(x+1\right)\\ =\left(x+1\right)\left(x^2-2x+3\right):\left(x+1\right)\\ =x^2-2x+3\\ a_2,=\left(2x^2+3y^2\right)^2:\left(2x^2+3y^2\right)=2x^2+3y^2\\ b_1,=\left(x^3-7x^2+x^2-7x-2x+14\right):\left(x-7\right)\\ =\left(x-7\right)\left(x^2+x-2\right):\left(x-7\right)\\ =x^2+x-2\\ b_2,=\left(8ab-7m^2n\right)\left(8ab+7m^2n\right):\left(8ab+7m^2n\right)=8ab-7m^2n\\ c,=\left(3x-2y^2\right)\left(9x^2+6xy^2+4y^4\right):\left(3x-2y^2\right)\\ =9x^2+6xy^2+4y^4\\ d,=\left(3x+2y^2\right)\left(9x^2-6xy^2+4y^4\right):\left(9x^2-6xy^2+4y^4\right)\\ =3x+2y^2\)
Bài 2:
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{59}\right)\) ⋮ 3
Vậy: A ⋮ 3
_____________
\(A=2+2^2+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(A=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(A=7\cdot\left(2+2^4+....+2^{58}\right)\) ⋮ 7
Vậy: A ⋮ 7
___________________
\(A=2+2^2+...+2^{60}\)
\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)
\(A=2\cdot5+2^2\cdot5+...+2^{58}\cdot5\)
\(A=5\cdot\left(2+2^2+...+2^{58}\right)\) ⋮ 5
Vậy: A ⋮ 5
Dễ vậy mà ko làm đc àk
\(a_1.a_2=b_1.b_2\Rightarrow\frac{a_1}{b_1}=\frac{b_2}{a_2}\)
\(\Rightarrow\frac{a_1}{b_1}+\frac{a_2}{b_2}=\frac{b_2}{a_2}+\frac{a_2}{b_2}\ge2\sqrt{\frac{b_2}{a_2}.\frac{a_2}{b_2}}=2\) (AM - GM)
có a1.a2=b1.b2
=> a1/b1=b2/a2
có \(\frac{a1}{b1}+\frac{a2}{b2}=\frac{b2}{a2}+\frac{a2}{b2}\)
áp dụng bất đẳng thức cosi cho 2 số dương có
\(\frac{b2}{a2}+\frac{a2}{b2}\ge2\sqrt{\frac{b2}{a2}.\left(\frac{a2}{b2}\right)}=2\)(đpcm)
Bài 1:
a: \(\left|x-\dfrac{1}{2}\right|+\dfrac{1}{2}=x\)
=>\(\left|x-\dfrac{1}{2}\right|=x-\dfrac{1}{2}\)
=>\(x-\dfrac{1}{2}>=0\)
=>\(x>=\dfrac{1}{2}\)
b: \(\left|1-3x\right|+1=3x\)
=>\(\left|1-3x\right|=3x-1\)
=>\(1-3x< =0\)
=>3x-1>=0
=>3x>=1
=>\(x>=\dfrac{1}{3}\)
Bài 2:
a: \(C=\left|5-x\right|+x=\left|x-5\right|+x\)
TH1: x>=5
\(C=x-5+x=2x-5\)
TH2: x<5
C=5-x+x=5
b: D=|2x-1|-x
TH1: x>=1/2
\(D=2x-1-x=x-1\)
TH2: \(x< \dfrac{1}{2}\)
D=1-2x-x=1-3x
Câu 1:
Vì ΔA'B'C'\(\sim\)ΔABC nên A'B'/8=A'C'/24=B'C'/32
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{A'B'}{8}=\dfrac{A'C'}{24}=\dfrac{B'C'}{32}=\dfrac{132}{64}=2\)
Do đó: A'B'=16cm; A'C'=48cm; B'C'=64cm