K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

54 + 34 = 88

A. 34 + 67= 101

B. 67 + 23 = 90

11 tháng 9 2021

54+34=88

34+67=101

67+23=90

NV
23 tháng 8 2021

ĐKXĐ: \(1-3m\ge0\Rightarrow m\le\dfrac{1}{3}\) (1)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(m^2+\left(1-3m\right)\ge\left(m-2\right)^2\)

\(\Leftrightarrow1-3m\ge-4m+4\Rightarrow m\ge3\) (2)

Kết hợp (1); (2) \(\Rightarrow\) không tồn tại m thỏa mãn

6 tháng 12 2021

a,

c, Gọi \(\left(D_3\right):y=ax+b\) là đt cần tìm

\(\Leftrightarrow\left\{{}\begin{matrix}a=-2;b\ne0\\3x+3=ax+b,\forall x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\-a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-2\end{matrix}\right.\)

Vậy \(\left(D_3\right):y=-2x-2\)

NV
23 tháng 11 2021

1.1

Pt có 2 nghiệm trái dấu và tổng 2 nghiệm bằng -3 khi:

\(\left\{{}\begin{matrix}ac< 0\\x_1+x_2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2\right)< 0\\\dfrac{2m+1}{m+2}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m=-\dfrac{7}{5}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

b.

Pt có nghiệm kép khi:

\(\left\{{}\begin{matrix}m+2\ne0\\\Delta=\left(2m+1\right)^2-8\left(m+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)

a: góc OBA+góc OCA=90+90=180 độ

=>ABOC nội tiếp

b: góc OIE=góc OCE=90 độ

=>OICE là tứ giác nội tiếp

=>góc OEI=góc OCI

=>góc OEI=góc OCB

OBAC nội tiếp

=>góc OCB=góc OAB

=>góc OEI=góc OAB

=>góc OEI=góc OAI

=>OIAE nội tiếp

29 tháng 5 2022

Đài ơi, giải giúp cho Sarah đi, tớ không có viết và giờ vào giường rồi , good nigh

DD
28 tháng 5 2022

Câu 10: 

Gọi \(H\) là giao điểm của \(MO\) và \(AB\).

Xét tam giác \(MAO\) vuông tại \(A\) đường cao \(AH\)

\(\dfrac{1}{AH^2}=\dfrac{1}{MA^2}+\dfrac{1}{AO^2}\Leftrightarrow\dfrac{1}{\left(\dfrac{R\sqrt{2}}{2}\right)^2}=\dfrac{1}{MA^2}+\dfrac{1}{R^2}\Leftrightarrow MA=R\).

\(S_{MAOB}=S_{MAO}+S_{MBO}\)

\(=\dfrac{1}{2}.AO.MA+\dfrac{1}{2}.OB.MB\)

\(=\dfrac{1}{2}.R.R+\dfrac{1}{2}.R.R=R^2\)

Chọn C.